
Recognizing Join Points
from their Context through Graph Grammars

Walter Cazzola
DICo, University of Milano, Italy

cazzola@dico.unimi.it

Stefano Salvotelli
DICo, University of Milano, Italy

stefano.salvotelli@studenti.unimi.it

ABSTRACT
Aspect-oriented software development has been proposed with the
intent of better modularizing object-oriented programs by confin-
ing crosscutting concerns in aspects. Unfortunately, the aspects do
not completely keep their promises. Most of the current approaches
revealed to be tightly coupled with the base-program’s code com-
promising the modularity. Moreover, the feasible modularization
has a coarse-grain since the aspects can only be woven at the pub-
lic interface level but not on a generic statement. We have designed
the Blueprint framework to overcome these limits. The join points
are located through the description of the context where they could
be found. This work is about the framework realization and the
role that graph grammars play in locating the join points in the
base-program from the context description.

Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors—Parsing.

General Terms: Languages.

Keywords: AOP, Join Point Selection, Graph Grammars.

1. INTRODUCTION
Aspect-oriented techniques are widely used to better modularize

OO programs by introducing crosscutting concerns in a safe and
non-invasive way. Each aspect-oriented approach is characterized
by a join point model consisting of the join points (well defined
points in the computational flow), a mechanism for selecting the
join points (pointcuts) and a mechanism for raising effects at the
join points (advice). Crosscutting concerns might be poorly modu-
larized as aspects without an appropriate join point model that cov-
ers all the interested elements. In most of the aspect-oriented ap-
proaches, the pointcut definition language allows the programmer
to select the join points on the basis of the program’s lexical struc-
ture, such as explicit program element names. This dependency
renders the pointcut definitions fragile [5] and hinders aspects re-
usability and evolvability [1, 3] since they are tailored on the base-
program. Moreover, the join points are defined at the operation
level. It implies that the possible set of join points includes every

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOM’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-451-5/09/03 ...$5.00.

operation that the system performs. Whereas, in many contexts we
wish to define aspects that are expected to work at the statement
level, i.e., by considering as a join point every point between two
generic statements. Several attempts [3, 4] to overcome these is-
sues have been investigated. It is widely recognized [3, 4, 6] that
the solution lies on a more semantic approach that could exploit
the base-program’s design information. On these considerations,
we have designed the Blueprint framework [2].

2. A GLIMPSE AT THE BLUEPRINTS
The key idea behind the Blueprint approach consists of describ-

ing where the join points could be through a “template” of the
base-program’s behavioral model without depending on its syn-
tax. This permits to select the join points by describing their sup-
posed position in the base-program’s code through patterns on the
base-program’s behavior, called join point blueprint (blueprint for
short). These blueprints do not describe the base-program’s behav-
ior rather they describe the desired properties and behaviors we are
looking for. Due to its independence of the base-program’s code,
the blueprint cannot be a complete description of the base-program
but just an abstraction of some significant parts. Each blueprint
will be matched against the base-program and its context informa-
tion will be unified with the base-program’s concrete data.

The Blueprint framework recalls the AspectJ terminology with
some slightly deviations. In our view, the join points are hooks
where the code may be added rather than well-defined points in the
execution of a program where effects can be raised. In AspectJ,
the considered join points are at the operation interface but a join
point could occur everywhere in the code not only at the operation
interface — the Blueprint exploits this concept. This view grants a
statement-level granularity to the Blueprint join point model. The
Blueprint approach allows to loosely describe the base-program’s
behavior. The aspect programmer can use different levels of detail
to describe a single blueprint by using any possible combinations
of loose and tight elements. So, it is possible to describe a well
identified behavior tightly coupled to code by specifying the names
of the involved elements as well as a less known behavior by using
meta-information to abstract from the real code.

The blueprints are the key elements of the whole approach. They
graphically depict where a join point should be in the base-program’s
behavior. They look like UML activity diagrams and behave sim-
ilarly. Both represent part of the computational flow of the base-
program. What differs is their use: the activity diagrams model the
base-program’s behavior whereas the blueprints depict where a join
point should be in the base-program’s behavior and structure.

In the rest of the section we describe the blueprints structure
and potentiality by an example; for a complete overview of the
blueprint’s syntax refer to [2]. The example has been presented

37

in [1] and is based on the HealthWatcher application [9]; it consists
of a simple blueprint (Fig. 1) that describes the algorithm to check
if a value is already in the dictionary and to add it when missing.
The selected join points can be used to force some synchronization
policy on the dictionary access.

«exactmatch»
this.repository.insert(x)

false true

«joinpoint a»

«joinpoint b»

SynchronizationBlueprint

a, b

variable meta-variable
repository, x

method meta-variable
void insert(ANY)

Figure 1: Case Study

Each blueprint is a diagram that
contextualizes the join point location
by describing some crucial events
that should occur close to the join
point and characterizing the context
of the join point. In our case, it
must describe a test followed by the
insertion of the element in the dic-
tionary when the test fails. Since
the blueprints are decoupled from
the base-program’s code and struc-
ture, the context is expressed through
meta-information that will assume
different values depending on the
code matched by the blueprint. In our
example both the test and the inser-
tion operation are meta-information;

e.g., the insert() method is a method meta-variable that will be
replaced by the real name used in the code during the weaving.

The piece of base-program’s computational flow is described
similarly to an activity diagram by actions and arrows connecting
them; the context change is described by a swimlane. A blueprint
can provide a loose or tight description of the computational flow;
the latter is realized by actions (red action states labeled with the
stereotype «exactmatch») and tight transitions (solid arrowhead
transitions) and what they describe is exactly what we are looking
for but the meta-information. The loose description, template ac-
tions (yellow action states) and loose transitions (open arrowhead
transitions), is more a suggestion of what we are looking for and
do not provide a strict sequence of how the events happen. In our
example, we are interested in a specific computational path, i.e.,
the test/insert sequence that we tightly describe; on the other side,
what happens when the test is passed is not relevant and loosely
described. The join point location is denoted by the «joinpoint
name» stereotype. In the example we have two join points located
before and after the interested piece of code respectively.

3. JOIN POINTS OUT OF A BLUEPRINT
Given a blueprint, we have to determine if and where the de-

scribed join points are in the base-program to weave the advice.
This is equivalent to compare the blueprint to the control flow graph
(CFG) of the base-program since both the blueprint and the CFG
are graphs themselves. Unfortunately, their different level of ab-
straction renders clumsy to apply graph isomorphism algorithms as
done in our first attempt [2]. Rather we consider more straightfor-
ward to exploit graph rewriting and graph grammars [8] to deter-
mine whether from the CFG can be derived the blueprint and if so
where the join points are. Therefore, to find the join point locations
can be summarized in deriving from the base-program’s CFG the
looked blueprint and deducting the join point position on the start-
ing CFG. To this aim, we defined a well-formed graph grammar
that rewrites CFGs into blueprints. A rewriting path from the CFG
to the blueprint grants a match for the blueprint.

Of course, to go from the CFG to the blueprint is too expen-
sive to be pursued due to the huge number of rewriting paths that
will be generated. The idea is to proceed from the blueprint to a
portion of the CFG by applying backward the production of the
graph grammar. The yielded CFG locates where the join points are

if any. During the rewriting process we also resolve all the meta-
variables to the names in the CFG (unification process) as done by
the Rekers-Schürr algorithm [7].

Please note that the programmer neither need to know the graph
grammar nor which productions should be applied to match the
blueprint. (S)He must exclusively draw the blueprint and this pro-
cess will be automatically and transparently realized by the weaver.

3.1 A Graph Grammar for the Blueprints
The graph grammar introduced in this section permits to derive

all the blueprints that can be expressed on the base-program’s con-
trol flow graph. If a blueprint provided by the programmer is in the
generated language we have a match.

Symbol Description
basic block
condition
control flow
start and end

Table 1: non-terminals.

Symbol Description
1-2 template action

action
loose transition
tight transition
fork (and/or)

join

condition
swimlane

loop

start and end
join point

Table 2: terminals.

The basic components of our graph
grammar are: a finite set of terminals, a
finite set of non-terminals, a set of start-
ing axioms from which deriving the lan-
guage and a finite set of productions.
Symbols. Since we are deriving the
blueprints from the base-program’s CFG,
the symbols composing a CFG are non-
terminals and the symbols composing a
blueprint are terminals in our grammar.

Please note that these sets are fixed
and they neither depend on the base-
program nor on the specific blueprints.
Axioms. Given that we have a control
flow graph for each method, we con-
sider the set of all the connected sub-
graphs of these CFGs as the set of the ax-
ioms for the graph grammar. Each CFG
is initially decorated with the marker 0

that will be transformed in 1 , 2 , 3 , 4 ,
5 during the rewriting process. Note

that we are not building the whole ax-
iom rather we expand the CFG for the
method on demand when looking for the blueprint (see the method
call productions).

3.1.1 The Productions of the Graph Grammar
The productions of the graph grammars are grouped according to

the desired application order and labeled by the marker. The mark-
ers automate the application of the productions during the rewriting
process granting that productions in a certain group can be applied
only if the current marker corresponds to their group. The markers
do not grant that all the productions that could be applied have been
applied when the marker changes; this check must be realized out
of the rewriting process. The derivation process starts by applying
the production 0 ⇒ 1 that changes the marker to the first step.

Basic Productions.
End point. The CFG’s end point is rewritten into the blueprint’s
end point.

1

⇒
1

Basic Join. A join in the CFG (a couple of arrows entering into
the same node S) must be expanded into a blueprint’s join.

1

S ⇒

1

S

We reported the case where the node S is a generic basic block but
the production applies to conditions and end points as well.

38

Sequence Productions.
One Step. The arrow between two basic blocks in the CFG can
be rewritten both into a loose transition and into a tight transition
in the blueprint.

1

S1 S2 ⇒
1

S1 S2

1

S1 S2 ⇒
1

S1 S2

Two Steps. Any combination of arrows (loose transition, tight
transition and control flow) connecting three basic blocks can be
rewritten into a sequence of two basic blocks (the first and the last
of the original sequence) connected by a loose transition.

1

S1 S2 S3 ⇒
1

S1 S3

The above production shows one of the many productions related
to the two-step sequences, the others are intuitive variations of this.

In all the reported productions:
– S1, S2 and S3 are depicted as generic basic blocks but they

could be conditions, join and start/end points as well;
– if the original nonterminal arrow was decorated with true or

false, also the new arrow will be decorated after it;
– the loose transition can be decorated with a scope («block»

and «method»); we do not report the productions.
Basic and sequence productions belong to phase 1. A production
(1 ⇒ 2) to step the marker forward is necessary.

Method Call Productions.
Swimlane. A basic block containing a method call can be ex-
panded by connecting the CFG of the invoked method to this basic
block. The introduced transition will be crossed by a swimlane
stressing the context switch.

2

<class>.<method>([<args>]) ⇒

2

<class>.<method>([<args>])

axiom

The method call productions belong to phase 2 of the rewriting
process. A couple of productions to step the marker on and back-
ward are necessary (2 ⇒ 3 and 2 ⇒ 1).

If and Loop Productions.
If. A condition block in the CFG can be rewritten in the equiva-
lent terminal; the condition is rewritten in a more abstract condition
with meta-variables, if necessary.

3

cond

false

A3

true

A2

A1

⇒

3

cond′

false

A3

true

A2

A1

– A1, A2 and A3 can be either loose or tight transitions, and do
not change by applying the production;

– if A1, A2 or A3 are missing they are not created by applying
the production;

– the original condition cond is rewritten into cond′ by abstract-
ing some elements and contextually declaring the needed
meta-variables.

Since the loop rule does not add anything to the discussion, for sake
of brevity it is omitted.

Action and Template Action Productions.
Action. A basic block containing a statement stmt can be rewrit-
ten in an action containing the statement stmt′.

3

stmt ⇒
3

«exactmatch»
stmt′

stmt′ abstracts stmt by replacing all variables with meta-variables;
the new meta-variables must be defined in the blueprint context.

At this time, each action contains a single instruction or an ab-
straction of it but this production allows to merge a sequence of
basic blocks in a single action in the blueprint when the basic block
sequence is connected by tight transitions. The corresponding pro-
duction is not reported for sake of brevity.
Template Action. A basic block containing a statement stmt can
be rewritten in a template action containing a statement of type:

use ((A in B) [or | and (A in B)]*)

where A is a meta-variable and
B ∈ {booleancondition, left, right, index, return, statement}.

The newly generated template action must be decorated with a
scope. According to the language definition, «block» and «method»
are the only allowed scopes.

3

stmt ⇒
3

use ((A in B) [or | and (A in B)]*)

«scope»

When we create a meta-variable, contextually we define it in the
context in the same side of the swimlane where the involved node
belongs.

If and loop and action and template action productions belong to
phase 3; a production (3 ⇒ 4) to step the marker on is necessary.

How to Abstract an Instruction or a Condition
Both if and loop and action and template action productions imply
the abstraction of the content of the basic block or condition to
match the vagueness of the corresponding blueprint element. The
abstraction operation takes place after the following rules:

– the method arguments are replaced by .. to neglect the num-
ber, the name and type of the arguments;

– a name is replaced by * to represent every possible element
without introducing new constraints;

– a name is replaced by a meta-variable name to couple the
blueprint to the code; in this case the meta-variable name
must be defined in the context as meta-informations.

Fork and Join Productions.
Fork. A couple of blueprints with a common prefix can be rewrit-
ten in a blueprint with a single occurrence of the common prefix
and a fork operator decorated with «and» or «or»1 forking on the
distinct parts of the original blueprints.

4

A1 A2

over1

under1

over2

under2

⇒

4

A1 A2

over1

under1 under2

«and» or «or»

Note that,
– over1 and over2 are the common prefix and must coincide;
– A1 and A2 can be tight or loose arrows.

1Please note, that there are two distinct productions representing
the two cases, but, to be brief, we describe them as one.

39

Join. A couple of blueprints with a common suffix can be rewrit-
ten in a blueprint with the distinct parts of the two original blueprints
joining, through the join operator, into the common suffix.

4

A1 A2

over1

under1

over2

under2

⇒

4

A1 A2

over1 over2

under1

Note that,
– under1 and under2 are the common suffix and must coincide;
– A1 and A2 can be tight or loose arrows.

Fork and join productions belong to phase 4; a production (4 ⇒ 5)
to step the marker forward is necessary.

Join Point Productions.
A blueprint can be rewritten by decorating one of its transitions by
the local join point symbol. The decoration will be accompanied by
a join point name and a scope information («source» or «target»
if the join point must be matched at the beginning or at the end of
the transition respectively).

5

A

over

under

⇒

5

A

over

under

«joinpoint jp»

To add the join points represents the last step in the rewriting
process; after this, the markers must be removed.

3.1.2 Some Notes about the Rewriting Process
The rewriting process can be summarized in six phases (numbered
from 0 to 5):

0 to choose an axiom, then
1 to apply the basic productions and the sequence productions

until all the nonterminal arrows have been rewritten; then
2 to expand the necessary basic blocks by applying the method

call productions; step 1 will be repeated on the expanded
CFG;

3 to apply if and loop productions and action and template ac-
tion productions with the side effect of getting out the meta-
variable from the CFG; after this step the graph is a blueprint
not a CFG/blueprint hybrid; then

4 to compose the generated blueprints by applying the fork and
join productions when possible;

5 at last, to decorate the blueprint with the join points by ap-
plying the join point productions.

This separation is expressed by the markers used in the definition of
the productions and automatically imposed by the rewriting process
(look at Sect. 3.2).

3.2 The Rekers-Schürr Algorithm for Blueprint
To carry out the match between the blueprint and the CFG we

adopt the Rekers-Schürr algorithm [7] for graphical parsing. This
algorithm permits to find out if a graph belongs to the language
generated from a given graph grammar and to determine which
rewriting paths can generate it. In our case, it will permit to de-
termine if a blueprint is a subgraph of the CFG by exploiting the
graph grammar described in the previous section. The algorithm is
divided in two phases named bottom-up and top-down.

result1 = true

result2 = true

list.
contains(
c.leftObject())

list.add(c.leftObject()) result1 = false

list.
contains(
c.rightObject())

list.add(c.rightObject()) result2 = false

return result1 && result2

false true

false true

(a) original CFG

0

result1 = true

result2 = true

list.
contains(
c.leftObject())

list.add(c.leftObject()) result1 = false

list.
contains(
c.rightObject())

list.add(c.rightObject())

return result1 && result2

false true

false

(b) step 0

1

list.
contains(
c.leftObject())

list.add(c.leftObject())

false true

(c) step 1
3

«exactmatch»
this.repository.insert(x)

false true

(d) step 3

5

«exactmatch»
this.repository.insert(x)

false true

«joinpoint a»

«joinpoint b»

(e) step 5

Figure 2: a) CFG and b-e) the axiom rewriting process.

The Bottom-up Phase. We look at the CFG for matches of the
right-hand side of the grammar productions, respecting the mark-
ers. When a right-hand side is recognized, a production instance
pi is created, and the elements that are in the left-hand side of the
production but missing from the graph (to avoid endless cycles in
the rewriting process) are added to it. The additions might in turn
lead to the recognition of other right-hand sides. The result of the
bottom-up phase is the collection PI of all production instances dis-
covered. The productions instances created have dependency rela-
tions among each other, such as above(pi, pi’), which means that pi
should occur before pi’ in a derivation, or exclude(pi, pi’), which
states that pi and pi’ may not occur in the same derivation. These
relations are computed during the bottom-up phase.
The Top-Down Phase. The dependency relations found in the
first phase are used to direct this second phase. It starts with an
empty graph and applies production instances of PI in such a way
that the above and exclude relations are respected. By knowing
all possible production instances and their dependency relations in
advance, the top-down phase is able to postpone exploration of al-
ternative derivation branches as long as possible. When necessary,
these alternative derivations are developed in a pseudo-parallel fash-
ion, with a preference for depth-first development.

3.3 Unification Process
The unification process maps the recognized blueprint back on

the code through the CFG localizing the join points. To this respect,
the rewriting path that has generated the blueprint is followed back-
ward and, during the process, the meta-variables are unified to the
names in the code to verify the correctness of the match.

In this process we must be careful on respecting the scope of
the join points; in general we have some join points on some loose
arrows that, during the backtracking process, will be expanded, so
we must know if the join point must be placed over or under this
expansion according to its scope.

5 due to the final aim of the unification process the join point
productions are not inverted;

4 to decompose the previously merged blueprints by inverting
the fork and join productions;

3 to apply the bottom-up phase of the Rekers-Schürr algorithm
(Sect. 3.2) to find all the possible unifications. Note that, we
must respect all the constraints defined by the meta-information
during this phase. We also create a table, according to the al-
gorithm, that describes all the possible inversions of the pro-
ductions and the dependencies between them.

1 to apply the top-down phase of the Rekers-Schürr algorithm
to the previously generated table and to determine the feasi-

40

V1

V2

«exactmatch»
this.repository.insert(x)

V3

V4

V5

false true

«joinpoint a»

«joinpoint b»

(a) step 3a

V2

«exactmatch»
this.repository.insert(x)

V3

V4

V5

false true

list.
contains(
c.leftObject())

V6

false

true

list.
contains(
c.rightObject())

V7

false

true
a

a a

b

V1

(b) step 3b

V2

«exactmatch»
this.repository.insert(x)

V3

V4

V5

false true

list.
contains(
c.leftObject())

V6

false

true

list.
contains(
c.rightObject())

V7

false

true

list.add(c.leftObject())

V8

false

false

list.add(c.rightObject())

V9

false
false

a
a a

b

V1

(c) step 3c

Figure 3: Application of the Rekers-Schürr Algorithm

ble production paths by looking if there is a possible inver-
sion for the sequence productions;

2 all the previous phases are applied to a single part of the
blueprint delimited by the swimlanes: established a match,
we restart the process for the portion of the blueprint below
the swimlane.

At the end we have a subgraph of the original CFG with some join
points on it and a unification for all the blueprint’s meta-variables.

4. CASE STUDY
In this section, we show how the join points described by a

blueprint are located inside a program. The example taken in con-
sideration is the one reported in Sect. 2. We carry out our test on
the following listing that presents at least a couple of matchings.

import java.util.LinkedList;

public class Set {
private LinkedList list;
public boolean add(Couple c) {

boolean result1 = true, result2 = true;

if (list.contains(c.leftObject())) result1 = false;
else list.add(c.leftObject());

if (list.contains(c.rightObject())) result2 = false;
else list.add(c.rightObject());

return result1 && result2;
}

}

«a»

«b»

«a»

«b»

Now we will apply the productions as defined by the grammar step
by step. Figure 2(a) shows the CFG for the add() method.

0 We consider the subgraph in Fig. 2(b) as the axiom to use in
the algorithm.

1 Fig. 2(c) shows the graph after rewriting the axiom by apply-
ing the basic productions and the sequence productions.

2 In this example we do not need to expand any method.
3 Fig. 2(d) shows the graph after we have applied the if and

loop productions and the action and template action produc-
tions; they have introduced the repository and x variable
meta-variables and the insert method meta-variable.

4 The fork and join productions cannot be applied.
5 Finally, by applying the join point productions we decorate

the graph with the «a» and «b» join points (Fig. 2(e)).
Now we will backtrack the productions application starting from

Fig 2(e) by using the algorithm described in 3.3:
5 the join point are brought back to the original graph through

the inversion of the other phases.
4 We do not need to invert any fork and join production.

3 Now we use the bottom-up phase of the Rekers-Schürr algo-
rithm to match the found blueprint with the CFG and locate
the join points in the code.

(a) We name all the nodes of the graph (Fig 3(a)).
(b) We add to the graph all the possible unifications of con-

ditions and actions (Fig. 3(b) and Fig. 3(c)).
During this phase we fill the table of the possible production
instances. We mark V2 as a possible result of an if production
that can be unified by list.contains(c.leftObject()) gen-
erating V7 and pi2, or by list.contains(c.rightObject())

generating V6 and pi1. V3 is the result of an action pro-

duction that can be unified by list.add(c.leftObject())

generating V8 and pi3, or by list.add(c.rightObject())

generating V9 and pi4.
pi prod left common right
pi1 if V6 V2
pi2 if V7 V2
pi3 action V8 V3
pi4 action V9 V3

1 To apply the top-down phase of the Rekers-Schürr algorithm,
we have to identify the dependencies between the unifica-
tions to remove the non compatible productions. In our ex-
ample, we find out that the only two allowed unifications are
identified by the productions {pi1, pi3} and {pi2, pi4}.

2 We do not have swimlanes so we have finished.
At the end of the matching process we have all the possible

matchings, found by inverting all the production paths identified
as valid. In particular, in the example we can find two possible
matchings of our blueprint and consequentially of our join points.

5. CONCLUSIONS & FUTURE WORK
This work presents the Blueprint framework and a graph gram-

mar based mechanism for locating the join points whose position
is described by a blueprint. The work is just a first attempt that
proves the feasibility of the approach. At the moment, we use the
Rekers-Schürr algorithm without exploiting the specific peculiarity
of the blueprint language but in the future we are going to optimize
the approach as well as the graph grammar used.

6. REFERENCES
[1] W. Cazzola and S. Pini. AOP vs Software Evolution: a Score

in Favor of the Blueprint. In RAM-SE’07, pp. 81-91, 2007.
[2] W. Cazzola and S. Pini. On the Footprints of Join Points: The

Blueprint Approach. J. of Obj. Tech., 6(7):167-192, 2007.
[3] A. Kellens, K. Gybels, J. Brichau, and K. Mens. A Model-

driven Pointcut Language for More Robust Pointcuts. In
SPLAT’06, Bonn, Germany, 2006.

[4] J. Klein, L. Hélouët, and J.-M. Jézéquel. Semantic-based
Weaving of Scenarios. In AOSD’06, pp. 27-38, 2006.

[5] C. Koppen and M. Störzer. PCDiff: Attacking the Fragile
Pointcut Problem. In Proc. of EIWAS’04, Germany, 2004.

[6] H. Masuhara, Y. Endoh, and A. Yonezawa. A Fine-Grained
Join Point Model for More Reusable Aspects. In Proc. of
APLAS’06, pp. 131-147, Sydney, Australia, Nov. 2006.

[7] J. Rekers and A. Schürr. A Parsing Algorithm for Context-
Sensitive Graph Grammars. TR95-05, Leiden Univ., 1995.

[8] G. Rozenberg, ed. Handbook of Graph Grammars and Com-
puting by Graph Transformation, Vol. 1: Foundations. 1997.

[9] S. Soares, E. Laureano, and P. Borba. Implementing Distribu-
tion and Persistence Aspects with AspectJ. In Proc. of OOP-
SLA’02, pp. 174-190, Seattle, USA, Nov. 2002.

41

	1 Introduction
	2 A Glimpse at the Blueprints
	3 Join Points Out of a Blueprint
	3.1 A Graph Grammar for the Blueprints
	3.1.1 The Productions of the Graph Grammar
	3.1.2 Some Notes about the Rewriting Process

	3.2 The Rekers-Schürr Algorithm for Blueprint
	3.3 Unification Process

	4 Case Study
	5 Conclusions & Future Work
	6 References

