
Walter Cazzola, Andrea Sosio, and Francesco Tisato. Reflection and Object-Oriented
Analysis. In Proceedings of the 1st Workshop on Object-Oriented Reflection and Soft-
ware Engineering (OORaSE’99), pages 95–106. November 1999.

Reflection and Object-Oriented Analysis

Walter Cazzola, Andrea Sosio, and Francesco Tisato

DISCO - Department of Informatics, Systems, and Communication,
University of Milano - Bicocca, Milano, Italy
{cazzolajsosiojtisato}@disco.unimib.it

Abstract. Traditional methods for object-oriented analysis and mod-
eling focus on the functional specification of software systems. Non-
functional requirements such as fault-tolerance, distribution, integration
with legacy systems, and the like, do not have a clear collocation within
the analysis process, as they are related to the architecture and work-
ings of the system itself rather than the application domain. They are
thus addressed in the system’s design, based on the partitioning of the
system’s functionality into classes as resulting from the analysis. As a
consequence of this, the “smooth transition from analysis to design” that
is usually celebrated as one of the main advantages of the object-oriented
paradigm does not actually hold for what concerns non-functional issues.
Moreover, functional and non-functional concerns tend to be mixed at
the implementation level. We argue that the reflective design approach
whereby non-functional properties are ascribed to a meta-level of the
software system may be extended “back to” analysis. Reflective Object
Oriented Analysis may support the precise specification of non-functional
requirements in analysis and, if used in conjunction with a reflective ap-
proach to design, recover the smooth transition from analysis to design
in the case of non-functional system’s properties.

1 Introduction

Traditional methods for object-oriented analysis and modeling focus on the
functional specification of software systems. The relevant concepts from the
application domain are modeled using concepts (classes, object, operation, at-
tributes, associations between classes, and so on) whose scope hardly includes
non-functional requirements such as fault-tolerance, distribution, performance,
persistence, security, and so on. These are not related to properties of the entities
in the “real world”, but rather to properties of the software objects that repre-
sent those entities. Such non-functional requirements play a major role in the
contract between customer and developer, and are usually included in analysis
documents, maybe in the form of labels or “stereotypes” attached to analysis
classes. Nevertheless, their treatment lacks a clear collocation in traditional ob-
ject oriented processes. As a consequence, they tend to be less precisely specified
in analysis, and they do not enjoy the “smooth transition from analysis to design”
which is usually ascribed as one of the main advantages of the object oriented
paradigm.



OOPSLA’99 Workshop on Reflection and Software Engineering

In this paper, we argue that a reflective approach is well suited to address
this problem. Reflection allows us to address non-functional requirements us-
ing traditional OO concepts, although these apply to a meta-level computation
rather than normal (“base-level”) computation. If traditional OO concepts are
used, notations, meta-models, methods, and methodologies used for conventional
OO analysis can be employed in the analysis of non-functional properties. Then,
if we also assume a reflective approach to design, the smooth transition from
analysis to design is also recovered. The main purpose of this paper is that of
illustrating this idea.

Although reflection has gained increasing attention within the last decade,
and is now recognized as a relevant and useful feature in OO languages and
programming systems, there is still a lack of research efforts devoted to the
definition of an OO process for reflective systems. As this paper proposes an
integrated reflective approach to analysis and design, it can also be regarded as
an attempt to shed some light on what such a process might look like.

The outline of the paper is as follows. Section 2 discusses the problems en-
countered in traditional object oriented analysis for what concerns the treatment
of non-functional requirements. Section 3 lists some major concepts from the dis-
cipline of (OO) reflection, which provide a basis for solving those problems. Sec-
tion 4 illustrates our proposal of a reflective object-oriented analysis, discussing
how non-functional requirements fit into such an approach to OO analysis, and
also pointing at the applications of the proposed approach to the design of re-
flective systems. Section 5 briefly points at related works in the discipline of
reflection, and section 6 draws some conclusions.

2 Non-Functional Requirements and Traditional
Object-Oriented Analysis

The first step in traditional OO analysis is related to the modeling of the applica-
tion domain, and results in the definition of the collection (hierarchy) of classes
corresponding to the relevant concepts in the domain and of the relationships
(associations) between those classes. Following a traditional, consolidated style
of software engineering, the authors of those methods insist that implementation
details (“how”) should be (as systematically as possible) ignored when specifying
a system (“what”). Once analysis is “complete”, the design begins based on the
classes found in the analysis, that are refined and progressively enriched with
details about “how” they are going to meet their specification. In this process,
new classes may be added (sometimes referred to as “architectural” as opposed
to “application” classes) whose purpose is that of providing a concrete infras-
tructure for the analysis classes to work. One of the major benefits coming from
object-orientation is the smooth transition from analysis to design; the classes
that are found in the analysis phase often preserve their original interfaces and
overall interrelationships when they are refined into more concrete design classes,
although several details are usually added.

96



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

The general lines of this process are of course valuable and could hardly be
criticized per se. Nevertheless, we believe that there is a missing piece, namely,
the treatment of non-functional requirements has no clear collocation in most
traditional OO processes. Non-functional requirements on the system, such as is-
sues related to fault-tolerance, distribution, performance, persistence, integration
with legacy or pre-existing systems, networking, authentication and security, and
so on, maybe as relevant to the customer as functional ones. (Also relevant may
be non-functional requirements on the process, such as limitations to budget or
time to market, development resources, or the need to reuse COTS components,
although we will not discuss this topic in this paper). The problem with non-
functional requirements is that they are not easily captured by traditional OO
concepts as employed by traditional OO modeling notations and meta-models.
While saying that money may be drawn from a bank account may result, say,
in the definition of a withdraw operation in class bank_account, saying that
the information about a bank account is persistent (or fault-tolerant, etc.) has
no counterpart in traditional object oriented concepts. Of course, it is possible
to specify that the account information must be persistent in the analysis of a
banking system; using the UML, for example, a stereotype “persistent” could be
attached to the relevant class(es). The problem occurs in the transition from
analysis to design: while functional requirements are relatively easily translated
into design elements (concrete classes, methods, attributes), this does not hold
for non-functional properties. Thus, the celebrated property of OO techniques of
supporting a smooth transition from analysis to design (and to implementation)
does not hold for many relevant features of a software system.

The immediate consequence of this state of facts is that implementing non-
functional properties is a less clearly constrained and guided activity than imple-
menting functional properties, i.e., such properties are less clearly specified and
tend to be more obscurely implemented. Moreover, they are necessarily tackled
based on the functional partitioning that resulted from analysis. This may be
misleading and contribute to bad design, especially for those non-functional re-
quirements that aren’t naturally related to any specific object, but rather require
a system-wide infrastructure. A typical result is that code related to such issues
gets intermixed with “functional” code in the implemented system, thus reducing
modifiability and reusability.

Other drawbacks of this situation can be highlighted. For example, the fact
that non-functional properties are not clearly specified in analysis documents re-
duces the effectiveness of requirements’ analysis as a contract between customer
and developer.

An example that can be mentioned to clarify these points is that of de-
signing authentication features for secure transactions in a banking system, an
issue that was studied by one of the authors (W. Cazzola [2]). Consider the
case of a withdraw operation to be implemented for ATM transactions. Func-
tionally, the withdrawal is just a movement of money. Nevertheless, it requires
a complex “non-functional” infrastructure including concurrency control, fault-
tolerance support, authentication, and possibly more. In a traditional OO pro-

97



OOPSLA’99 Workshop on Reflection and Software Engineering

cess, the designer may receive, as an outcome of analysis, a class ATM providing
an operation withdraw labeled as atomic, secure, reliable, and so on. The de-
signer will probably cope with these additional properties refining the withdraw
operation into a very complex activity (perhaps described by a state diagram
with dozens of states and transitions). The resulting implementation is necessar-
ily one where the basic semantics of withdraw is obscured and dispersed in the
midst of a plethora of additional code that has little to do with the movement of
money per se, thus making the ATM object harder to reuse and modify. Changes
in the analysis documents (e.g., if the customer asks for a higher level of secu-
rity) provide no hint as to how the system design and implementation should
be changed (e.g., changes cannot be traced easily from analysis onto design and
implementation).

3 Object Oriented Reflection

3.1 Basic Concepts

Computational reflection (or reflection for short) is defined as the activity per-
formed by an agent when doing computations about itself [12]. The concept
applies quite naturally to the OOP paradigm [5,7,12]. Just as objects in conven-
tional OOP are representations of “real world” entities, computation objects can
themselves be represented by other objects, usually referred to as meta-objects,
whose computation is intended to observe and modify their referents (the objects
they represent). Meta-computation is often performed by meta-objects by trap-
ping the normal computation of their referents; in other words, an action of the
referent is trapped by the meta-object, which performs a meta-computation ei-
ther substituting or encapsulating the referent’s actions. Of course, meta-objects
themselves can be represented, i.e., they may be the referents of meta-meta-
objects, and so on. A reflective system is thus structured in multiple levels,
constituting a reflective tower. The objects in the base level are termed base-
objects and perform computation on the entities of the application domain. The
objects in the other levels (termed meta-levels) perform computation on the
objects residing in the lower levels.

There is no need for the association between base-objects and meta-objects
to be 1-to-1: several meta-objects may share a single referent, and a single meta-
object may have multiple referents. The interface between adjacent levels in the
reflective tower is usually termed a meta-object protocol (MOP). Albeit several
distinct reflection models have been proposed in the literature (e.g., where meta-
objects are coincident with classes, or instances of a special class MetaObject,
and so on), such a distinction is not relevant for this discussion and will be
omitted.

In all reflective models and MOPs, an essential concept is that of reification.
In order to compute on the lower levels’ computation, each level maintains a
set of data structures representing (or, in reflection parlance, a reification of )
such computation. Of course, the aspects of the lower levels’ system that are

98



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

reified depend on the reflective model (e.g., structure, state and behavior, com-
munication). In any case, the data structure comprising a reification are causally
connected to the aspect(s) of the system being reified; that is, any change to those
aspects reflects in the reification, and vice versa. It is a duty of the reflective pro-
gramming language framework to preserve the causal connection link between
the levels (depending on the reflective model, this infrastructure may operate
at compile- or at run-time): the designers and programmers of meta-objects are
insulated from the details of how causal connection is achieved. Meta-objects
can be programmed in exactly the same programming paradigm as conventional
computation. It is in fact possible, and most usual, that all levels of the reflec-
tive tower be programmed in the same programming language. The fact that all
the levels of the tower be implemented in a single language is qualified by some
author as one of the characterizing features of reflection proper [7].

Another key feature of all reflective models is that of transparency [16]. In the
context of reflection, this term is used to indicate that the objects in each level
are completely unaware of the presence and workings of those in the levels above.
In other words, each meta-level is added to the referent level without modifying
the referent level itself. The virtual machine of the reflective language, in other
words, manages causal connection link between a meta-level and its referent level
in a way that is transparent both to the programmer of the meta-level and to
the programmer of the referent level.

3.2 Reflection and non-functional properties

An application of reflection, supported by the feature of transparency, is the
(non-intrusive) evolution of a system: the behavior or structure of the objects
in a system can be modified, enriched, and/or substituted without the need
to modify the original system’s code. In principle, this may have interesting
applications to the evolution of non-stopping systems or systems that are only
available in black-box form.

Another well-known application, which is the one that will be considered
in this paper, is that of adopting a reflective approach to separate functional
and (possibly several distinct) non-functional features in the design of a sys-
tem. In a typical approach, the base-level objects may be entrusted to meet
the application’s functional requirements, while meta-levels augment the base-
level functionality ensuring non-functional properties (e.g., fault tolerance, per-
sistence, distribution, and so on). Depending on the specific support provided by
the reflective language virtual machine, the evolution of a system through the
addition of a meta-level may require recompilation or maybe done dynamically.
With reference to this partitioning of a system, in the following we will refer to
the base-level objects as “functional objects” and to meta-level objects as “non-
functional objects”. While functional objects model entities in the real world
(such as bank_account), non-functional objects model properties of functional
objects (to reflect this, non-functional classes may have names that correspond
to properties, e.g., fault_tolerant_object).

99



OOPSLA’99 Workshop on Reflection and Software Engineering

There are several reasons why a design could take advantage from such an
approach. Of course, separation of concerns (in general, hence also in this case)
enhances the system’s modifiability. Depending on whether a required modifi-
cation of the system involves functional or non-functional properties, functional
objects alone or non-functional objects alone need to be modified. If a new se-
curity policy is adopted for the transactions related to the accounts in a bank,
the (functional) class bank_account will be modified; if, say, a higher level of
fault-tolerance is required, the (non-functional) class fault_tolerant_object will
be changed. This approach also enhances reusability in two ways: first, the very
same “functional” object (e.g., a bank_account object) can be reused with or
without the additional properties implemented by its associated meta-objects,
depending on context. Any additional feature of an object (e.g., fault-tolerance,
the capability to migrate across platforms, persistence, and so on) has an associ-
ated overhead. In a reflective approach, all such features are not hardwired into
the code of the object itself but implemented by separated meta-objects; when-
ever the additional features are not required, the corresponding meta-objects are
simply not instantiated.

As a second form of reuse, many non-functional properties lend themselves
to be implemented in a way that is essentially independent of the specific class of
objects for which they are implemented. As an example, support for persistence
is usually independent of the specific type of object being made persistent, as
demonstrated by the adoption of “persistent” classes in Java and other main-
stream OO programming languages. In our opinion, this is likely to hold for sev-
eral typical non-functional properties; some examples are provided by the works
on reflective approaches to fault-tolerance [1,6], persistence [11], atomicity [18],
and authentication [2, 15,17]. Based on this fact, it is reasonable to expect that
the same meta-object can be reused to attach the same non-functional property
to different functional objects.

4 Reflective Object-Oriented Analysis

4.1 General Concepts

Two main points from the considerations of the previous section can be high-
lighted:

¶ the property of transparency of reflection allows for functional and non-
functional concerns to be clearly separated in the design of a system, being
respectively entrusted to the base-level and to the meta-levels;

· the concept of reification, and the transparent application of causal connec-
tion by the virtual machine of a reflective programming language, allows for
meta-levels to be programmed in the same paradigm as the base-level.

Based on these two points we propose a novel approach to the treatment
of non-functional properties in OO analysis. As we discussed in section 2, non-
functional properties have no clear collocation in traditional OO analysis because

100



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

they have no counterpart in the vocabulary of OO concepts. Fault-tolerance can-
not be represented as a class, an object, an operation, an attribute, an association
between classes, and so on. Nevertheless, in a reflective approach, those non-
functional properties are represented by meta-objects. Meta-objects are objects
themselves, and lend themselves to be described in OO terms. The transition to
the “meta”, in a sense, transforms something that is “about” an object (a prop-
erty of an object) into an object itself ; it “reifies” a property. As a consequence of
this transformation, object properties themselves are absorbed into the scope of
notations and meta-models for OO modeling and hence become natural subjects
for OO analysis.

This can be further illustrated by the following parallelism. Just like the
concept of reification allows for meta-levels (that implement computation on
computation) to be programmed in the same language as used for the base-level
(that implements computation on the domain), so it allows for the computation
performed by the meta-level to be analyzed and modeled using the same con-
cepts and techniques that are used to analyze and model the computation in the
base level. When applied to base-level objects, these concepts model properties
of the real-world entities that those objects model (e.g., operations model the
dynamics of real-world objects, such as drawing money from a bank account).
When applied to meta-level objects, the same concepts model properties of the
software objects that represent real-world entities within the system (e.g., oper-
ations model the dynamics of software objects, such as their ability to be saved
onto, or restored from, files).

4.2 Reflective Object-Oriented Analysis

We argue that the considerations made insofar suggest a novel approach to OO
analysis, namely reflective object-oriented analysis (ROOA). In ROOA, the re-
quirements of the system are partitioned, in the analysis phase, into concepts
related to the domain and concepts related to the software system operating in
that domain (i.e., into functional and non-functional). The concepts related to
the software system may, themselves, be partitioned according to the properties
they deal with (fault-tolerance, persistence, distribution, reliability, and so on).
Observe that this partitioning is orthogonal to the traditional partitioning of the
functional requirements of a system, namely that guided by OO concepts applied
to the application domain. It is then natural to speak of additional “levels” of
specification, which complement the traditional (functional) level. Note that we
are not necessarily proposing a method ; it is not our assumption, as for now,
that this partitioning into levels be a step that must be taken “before” or “after”
traditional analysis. Our perception is simply that such a partitioning should
complement the traditional functional partitioning as assumed, explicitly or im-
plicitly, by current OO methods. Each level of this partitioning can be analyzed
using standard OO analysis techniques, and specified within a traditional OO
meta-model (e.g., the UML meta-model). All the concepts from the standard
OO vocabulary can be used when modeling non functional levels (class, inheri-
tance, association, attribute, operation, and so on), albeit, as mentioned in the

101



OOPSLA’99 Workshop on Reflection and Software Engineering

previous subsection, these levels are about properties of the system rather than
the domain. This approach, per se, has the advantage of allowing for a more pre-
cise specification of non-functional requirements. To take full advantage of the
approach, nevertheless, a reflective approach to design should also be applied,
whereby the non-functional levels of analysis are mapped onto meta-levels (in the
reflective sense) in the implemented system. In this case, the additional benefit
of ROOA is that a smooth transition from analysis to design for non-functional
requirements is feasible.

Let us consider the ATM example again. In the ROOA approach, the with-
draw operation is specified, in the analysis, simply as a movement of money.
Nevertheless, it is also specified (at another, nonfunctional level) that some
properties, such as atomicity and security, hold for some actions in the system,
including the withdraw operation. These properties are analyzed using standard
OO analysis, and result in the definition of a set of classes describing them pre-
cisely (e.g., describing what an “atomic operation” is). In the transition to design,
these properties are refined into meta-objects’ classes charged with preserving
the atomicity (security, reliability) of some of the operations of their referents.
While a detailed discussion of how this could be done cannot be included here,
the reader may refer to [2] for more information on a reflective approach to
authentication.

The main objective of this work is that of suggesting that adopting reflec-
tive point of view may be useful to address the analysis and specification of
non-functional requirements, and especially so when the resulting system is a
reflective system separating non-functional from functional concerns via reflec-
tion. Nevertheless, we also believe that the general lines of ROOA apply, in
general, to the design of any reflective system. To the best of our knowledge,
few efforts have been made to propose extensions or adaptations of OO methods,
methodologies, and processes to OO reflective systems. In our view, the best way
to design a reflective system is that of considering it in a reflective perspective
from the outset, i.e., from analysis. This means that the analysis phase should
include a partitioning of the system’s requirements into levels as that proposed
in the previous section.

5 Related Work

Several authors within the Reflection field have considered the application of re-
flective techniques to address non-functional software requirements. Hürsch and
Videira-Lopes [8] highlight the relevance of an approach that separates multi-
ple concerns (including functionality as one specific concern, as opposed to other
non-functional concerns) both at the conceptual and implementation level. They
provide a tentative classification of the concerns that may be separated in gen-
eral software systems, and encompass the major techniques that may be used to
separate them, namely meta-programming, pattern-oriented programming, and
composition filters. Their discussion is somewhat less specific than that pro-
vided by this paper, as their concept of separation of concerns is not neces-

102



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

sarily achieved via the use of reflective techniques (i.e., meta-programming).
Most of other related efforts propose design approaches (rather than analysis
approaches) for structuring a software system in such a way that non-functional
requirements are addressed by a system’s meta-level(s) and thus cleanly sep-
arated from functional (base level) code. As we basically aim at supporting a
smooth transition from analysis to design via reflection, reflective design ap-
proaches to the enforcement of non-functional properties provide us with some
hints as to what the result of this process (that is, the resulting design) should
look like. Stroud and Welch [17] discuss a reflective approach to the dynamic
adaptation of security properties of software systems. In their approach, secu-
rity properties are transparently added to an existing system (even available in
black-box form) and easily tailored to any specific environment onto which the
system is downloaded. Their paper explicitly tackles the issue of separating func-
tional and non-functional requirements and reusing meta-objects implementing
non-functional properties. Several authors addressed the transparent addition of
fault-tolerance features to a software system via reflection, e.g. [1] (that applies
channel reification to communication fault-tolerance) [14] (that employs reflec-
tive N-version programming and recovery blocks) [13] (that employs reflective
server replication) and [9] (that employs reflective checkpointing in concurrent
object-oriented systems). As mentioned above, other non-functional issues that
were demonstrated to be effectively tackled via reflection include persistence [11],
atomicity [18], and authentication [2, 15,17].

Also related to the topic of this paper is our work on Architectural Reflec-
tion (AR) [3,4]. In AR, a reflective approach is adopted for reifying the software
architecture of a software system. While the definition of the architecture of a
system is usually regarded as belonging to (early) design, there are cases where
requirements on the architecture of a system should be considered from the out-
set (i.e., the need for integration with legacy systems, the need to reuse COTS
components, and so on). Architectural properties of both the whole system (as
actually addressed by AR) and of single objects may be addressed in a reflective
approach like that suggested in this paper. Other authors have considered ad-
dressing architectural properties of objects using a meta-level; for example, [10]
proposes a reflective object-oriented pattern for the separated definition of an
object’s behaviour.

6 Conclusions and Future Work

This paper is intended to suggest how traditional OO analysis could be ex-
tended in order to cope with non-functional requirements in a cleaner way than
supported by current methods. It suggests that a reflective approach could be
taken, whereby a system’s specification is partitioned into levels (i.e., in way that
is orthogonal to a “functional” partitioning), where the base level includes infor-
mation on the domain, and the other levels include information on the system.
This partitioning into levels could then be mapped easily onto a reflective archi-
tecture where requirements related to the system are refined into meta-objects

103



OOPSLA’99 Workshop on Reflection and Software Engineering

that augment base-objects with non-functional properties. Also, applying this
partitioning in the analysis phase may be useful, in general, when designing re-
flective systems. Of course, this is basically a “vision” paper and its intent is
that of stimulating further work on the relationships between the concept of
reflection and software methods (especially OO methods). We plan to continue
this work by providing a more formal description of ROOA and considering in
more detail how the approach may fit with mainstream OO notations, meta-
models, methods, and methodologies. As a first step, we plan to study how the
UML meta-model could be applied, in practice, to analyze the non-functional
properties of a real system within the ROOA approach. While our ideas mainly
stemmed from our interest to a reflective approach to design, it is most inter-
esting to see if and how reflective concepts can actually be applied in analysis
while preserving the valuable separation between “what” and “how” preached by
software engineers. Should the outcome of this research be promising, we plan
to build a tool to be integrated with a mainstream OO modeling tool such as
Rational Rose and supporting ROOA. We also plan to investigate how ROOA
can be integrated into mainstream object-oriented methods (e.g., Objectory).

Acknowledgements

The authors wish to thank Sergio Ruocco from DiSCO, University of Milano
Bicocca, for his valuable contributions to the ideas presented in this paper.

104



Walter Cazzola, Robert J. Stroud, and Francesco Tisato Editors

References

1. Massimo Ancona, Walter Cazzola, Gabriella Dodero, and Vittoria Gianuzzi.
Channel Reification: a Reflective Approach to Fault-Tolerant Software Develop-
ment. In OOPSLA’95 (poster section), page 137, Austin, Texas, USA, on 15th-
19th October 1995. ACM. Available at http://homes.dico.unimi.it/~cazzola/
cazzolawbib-by-year.html.

2. Massimo Ancona, Walter Cazzola, and Eduardo B. Fernandez. Reflective Autho-
rization Systems: Possibilities, Benefits and Drawbacks. In Jan Vitek and Christian
Jensen, editors, Secure Internet Programming: Security Issues for Mobile and Dis-
tributed Objects, Lecture Notes in Computer Science 1603, pages 35–49. Springer-
Verlag, July 1999.

3. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural
Reflection: Bridging the Gap Between a Running System and its Architectural
Specification. In Proceedings of 6th Reengineering Forum (REF’98), pages 12–1–
12–6, Firenze, Italia, on 8th-11th March 1998. IEEE.

4. Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Architectural
Reflection: Concepts, Design, and Evaluation. Technical Report RI-DSI 234-99,
DSI, Università degli Studi di Milano, May 1999. Available at http://homes.
dico.unimi.it/~cazzola/cazzolawbib-by-year.html.

5. Pierre Cointe. MetaClasses are first class objects: the ObjVLisp model. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), volume 22(10)
of Sigplan Notices, Orlando, Florida, USA, October 1987. ACM.

6. Jean-Charles Fabre, Vincent Nicomette, Tanguy Pérennou, Robert J. Stroud, and
Zhixue Wu. Implementing Fault Tolerant Applications Using Reflective Object-
Oriented Programming. In Proceedings of FTCS-25 “Silver Jubilee”, Pasadena, CA
USA, June 1995. IEEE.

7. Jacques Ferber. Computational Reflection in Class Based Object Oriented Lan-
guages. In Proceedings of 4th Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA’89), volume 24 of Sigplan Notices,
pages 317–326. ACM, October 1989.

8. Walter Hürsch and Cristina Videira Lopes. Separation of Concerns. Technical
Report NU-CCS-95-03, Northeastern University, Boston, February 1995.

9. Mangesh Kasbekar, Chandramouli Narayanan, and Chita R. Das. Using Reflection
for Checkpointing Concurrent Object Oriented Programs. In Shigeru Chiba and
Jean-Charles Fabre, editors, Proceedings of the OOPSLA Workshop on Reflection
Programming in C++ and Java, October 1998.

10. Luciane Lamour Ferreira and Cecília M. F. Rubira. The Reflective State Pattern.
In Steve Berczuk and Joe Yoder, editors, Proceedings of the Pattern Languages of
Program Design, TR #WUCS-98-25, Monticello, Illinois - USA, August 1998.

11. Arthur H. Lee and Joseph L. Zachary. Using Meta Programming to Add Persistence
to CLOS. In International Conference on Computer Languages, Los Alamitos,
California, 1994. IEEE.

12. Pattie Maes. Concepts and Experiments in Computational Reflection. In Nor-
man K. Meyrowitz, editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), volume 22 of
Sigplan Notices, pages 147–156, Orlando, Florida, USA, October 1987. ACM.

105

http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html
http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html
http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html
http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html


OOPSLA’99 Workshop on Reflection and Software Engineering

13. Juan-Carlos Ruiz-Garcia Marc-Olivier Killijian, Jean-Charles Fabre and Shigeru
Chiba. A Metaobject Protocol for Fault-Tolerant CORBA Applications. In Pro-
ceedings of the 17th Symposium on Reliable Distributed Systems (SRDS’98), pages
127–134, 1998.

14. Brian Randell. System Structure for Software Fault Tolerant. IEEE Transaction
on Software Engineering, SE-1(2):220–232, June 1975.

15. Thomas Riechmann and Jürgen Kleinöder. Meta-Objects for Access Control: Role-
Based Principals. In Colin Boyd and Ed Dawson, editors, Lecture Notes in Com-
puter Science, number 1438 in Proceedings of 3rd Australasian Conference on In-
formation Security and Privacy (ACISP’98), pages 296–307, Brisbane, Australia,
July 1998. Springer-Verlag.

16. Robert J. Stroud. Transparency and Reflection in Distributed Systems. ACM
Operating System Review, 22:99–103, April 1992.

17. Robert J. Stroud and Ian Welch. Dynamic Adaptation of the Security Properties of
Application and Components. In Proceedings of ECOOP Workshop on Distributed
Object Security (EWDOS’98), in 12th European Conference on Object-Oriented
Programming (ECOOP’98), pages 41–46, Brussels, Belgium, July 1998. Unité de
Recherche INRIA Rhǒne-Alpes.

18. Robert J. Stroud and Zhixue Wu. Using Meta-Object Protocol to Implement
Atomic Data Types. In Walter Olthoff, editor, Proceedings of the 9th Conference
on Object-Oriented Programming (ECOOP’95), LNCS 952, pages 168–189, Aarhus,
Denmark, August 1995. Springer-Verlag.

106


	1 Introduction
	2 Non-Functional Requirements and Traditional Object-Oriented Analysis
	3 Object Oriented Reflection
	3.1 Basic Concepts
	3.2 Reflection and non-functional properties

	4 Reflective Object-Oriented Analysis
	4.1 General Concepts
	4.2 Reflective Object-Oriented Analysis

	5 Related Work
	6 Conclusions and Future Work

