
AOP for Software Evolution: A Design Oriented Approach ∗

Walter Cazzola
Dept. of Informatics and Communication,

Università degli Studi di Milano

cazzola@dico.unimi.it

Sonia Pini, Massimo Ancona
Dept. of Informatics and Computer Science,

Università degli Studi di Genova

{pini|ancona}@disi.unige.it

ABSTRACT
In this paper, we have briefly explored the aspect-oriented approach
as a tool for supporting the software evolution. The aim of this
analysis is to highlight the potentiality and the limits of the aspect-
oriented development for software evolution. From our analysis
follows that in general (and in particular forAspectJ) the ap-
proach to join points, pointcuts and advices definition are not enough
intuitive, abstract and expressive to support all the requirements for
carrying out the software evolution. We have also examined how
a mechanism for specifying pointcuts and advices based on design
information, in particular on the use ofUML diagrams, can better
support the software evolution through aspect oriented program-
ming. Our analysis and proposal are presented through an example.

Keywords
AOP, SW Evolution, Design Information,UML, Join Point Model.

1. INTRODUCTION
In [1], software evolution is defined as a kind of software main-

tenance that takes place only when the initial development was suc-
cessful. The goal consists of adapting the application to the ever-
changing, and often in an unexpected way, user requirements and
operating environment.
Software evolution, as well as software maintenance, is charac-
terized by its huge cost and slow speed of implementation. Of-
ten, software evolution implies a redesign of the whole system, the
development of new features and their integration in the existing
and/or running systems (this last step often implies a complete re-
building of the system).
Besides, software systems are often asked for promptly evolving to
face critical situations such as to repair security bugs, to avoid the
failure of critical devices and to patch the logic of a critical system.
It is fairly evident the necessity of improving the software adapt-
ability and its promptness without impacting on the activity of the
system itself. This statement brings forth the need for a system

∗This work has been partially supported by Italian MIUR (FIRB
“Web-Minds” project N. RBNE01WEJT005).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

to manage itself to some extent, to dynamically inspect component
interfaces, to augment its application-specific functionality with ad-
ditional properties, and so on.
Nonstopping applications with a long life span are typical appli-
cations that have to be able to dynamically adapt themselves to
sudden and unexpected changes to their environment. Therefore,
the support for run-time adaptive software evolution is a key aspect
of these systems. Software evolution of a generic system is usu-
ally carried out by stopping the system and manually, or with the
aid of specific tools, changing the system behavior according to the
required evolution. A more dynamic approach consists of encapsu-
lating the system prone to be adapted in a monitoring system that
wait for an event. When the event occurs, it plans a countermove
that will imply the automatic and dynamic evolution of the moni-
tored system. The monitoring system also takes care to grant the
safety and stability of the monitored system against its evolution.
Some examples of this approach are [3] and [6].
Independently of the mechanism adopted for planning the evolu-
tion, it requires a mechanism that permits of concreting the evolu-
tion on the running system. In particular this mechanism should
be able of i) extruding the code interested by the evolution from
the whole system code, ii) carrying out the patches required by the
planned evolution on the located code. Both these steps must occur
without compromising the system stability and the services avail-
ability (that is, without stopping the system providing them).
Aspect-oriented programming (AOP) [9] provides some mecha-
nisms (join points, pointcut andaspect weaving) that allow of mod-
ifying the behavior and the structure of an application, also of a
nonstopping application (dynamic weaving [14]). The AOP mech-
anisms better address functionality that crosscut the whole imple-
mentation of the application. Evolution is a typical functionality
that crosscut the code of many objects in the system. Moreover, the
AOP mechanisms seem suitable to deal with the detection of the
code to evolve and with the instrumentation of such code. In our
view, AOP will play the role of the low-level tool used to render
effective the planned evolution.
The rest of this paper is organized as follows. Section 2 analyzes
the AOP as a support to software evolution. This analysis has per-
mitted to put in evidence benefits and drawbacks of the aspect-
oriented (in particular ofAspectJ) approach when applied to the
evolution of a system. In section 3, we have proposed our approach
to pointcut and join point definition based on theUML method-
ology. This proposal should overcome the drawbacks stressed in
section 2. Finally in the sections 4 and 5 some related and future
works are faced and some conclusions are drawn out.

2. AOP AND SOFTWARE EVOLUTION
AOP [9] is both a designing and programming technique that

takes another step towards increasing the kinds of design concerns
that can be cleanly captured within source code. Its main goal con-
sists of providing systematic methods for the identification, modu-
larization, representation and composition of crosscutting concerns
such as security, mobility and real-time constraints. The captured
aspects (both functional and nonfunctional) are separated into well-
defined modules that can be successively composed in the original
or in a new application.
The basic mechanisms for separating the crosscutting concerns in
aspects and for weaving them together again are:join points, point-
cut, andadvice. Join points represent well-defined points in the ex-
ecution of a program, such as method calls, object field accesses
and so on.Pointcut is a construct that picks out a set of join points
based on given criteria, such as method names and so on. Point-
cuts serve to define which advice has to be applied. An advice
defines additional code to be executed at join points picked out by
the pointcuts. Finally, an aspect represents a crosscutting concern
and is composed of pointcuts definition and advices to be weaved
at the corresponding join points. The frame that renders possible
the proper execution of the assembled program is calledjoin point
model.
AspectJ [8, 11] has been the pioneer of the aspect-oriented lan-
guages and it is still one of the most relevant frameworks support-
ing the AOP methodology. InAspectJ an aspect looks like:

aspect <aspect name> {
/* pointcut definitions */

pointcut <pointcut designator> : <join points description>;
/* advice definitions */

<advice type> : <pointcut designator> { <advice body> }
}

As defined in [8], join points are basically described by composing
explicit method signatures with predicates on the execution flow,
i.e., the given kind of join points. An example of join point descrip-
tion is: call(* *.print(..)); it describes all the join points at
the invocation of the methods namedprint, does not matter which
object receives the message, its return type and how many argu-
ments it needs. Whereas, the advice type suggests the point with
respect to the join point where the advice body will be weaved,
some examples arebefore(), after() andaround() whose be-
havior comes after their name.
However, in this last few years many other frameworks have been
developed, some of them are:AspectWerkz [18], Josh [5] and
JMangler [10]. Notwithstanding that this paper takesAspectJ
as referring AOP framework, many of the considerations we do can
be also applied to other frameworks.
From AOP characteristics, it is fairly evident that AOP has the po-
tential for providing the necessary tools for instrumenting the code
of a nonstopping system, especially when aspects can be plugged
and unplugged at run-time. Pointcuts should be used to pick out a
region of the code involved by the evolution, whereas the advices
should be used to define how the code — identified by the point-
cut — should evolve. Weaving such an aspect on the running sys-
tem should either inject new code or manipulate the existing code,
allowing the system dynamic evolution.
Unfortunately, to define pointcuts that point out the code interested
by the evolution is a hard task because such modifications can be
scattered and spread all around the code and not confined to a well-
defined area that can be taken back to a method call. Moreover the
changes could entail only part of a statement, e.g., the exit condi-
tion of a loop or an expression, and not the entire statement. To
highlight the entity of the problem we can consider the implemen-
tation of a simple bounded buffer withget() andput() operations

with the usual semantics.

public class BoundedBuffer {
private int first = 0;
private final int MAX = 20;
private int buffer[] = new int[MAX];

public void put(int n) throws FullBufferException {
if (first < MAX) buffer[first++] = n;
else throw new FullBufferException();

}
public int get() throws EmptyBufferException {
if (first > 0) return buffer[--first];
else throw new EmptyBufferException();

}
}

Listing 1: Bounded Buffer inJava

The Java code, reported in listing 1, despite of its simplicity,
is enough complex to be used to explain the hardness of deter-
mining all the code involved by an attempt of evolution. At this
point, we consider a change to the system requirements that forces
a change to the applicability rule of the methodget(). After that,
the methodget() can be invoked only after one or more invoca-
tions of the methodput() and not immediately after another in-
vocation of the methodget(). At a first glance could seem that
the changes are confined in the body of the methodget() since
it is the only method whose requirements change, of course, this
impression is not true.

public class BoundedBuffer {
private int first = 0;
private boolean lastIsPut = false;
private final int MAX = 20;
private int buffer[] = new int[MAX];

public void put(int n) throws FullBufferException {
if (first < MAX) {
buffer[first++] = n;
lastIsPut = true;

} else throw new FullBufferException();
}
public int get() throws NotEnoughPutsException {
if (lastIsPut) {
buffer[first++] = n;
lastIsPut = false;

} else throw new NotEnoughPutsException();
}

}

Listing 2: Evolved Bounded Buffer

Rather, the whole class code is affected by the required evolution:

– a new boolean attribute (lastIsPut) has been introduced in
the class, if it holds true the methodput() is the last invoked,
it will hold false otherwise;

– each time the methodput() is invoked the new attribute
lastIsPut must be set totrue;

– the precondition to the call of the methodget() changes to
satisfy the new constraint1, moreover, the flaglastIsPut
must be set tofalse.

1Note that, if you can invokeget() only after aput() has oc-
curred, it is impossible to invoke the methodget() on an empty
buffer.

The listing 2 shows the evolved bounded buffer class, to give more
emphasis to the changes, they are written in gray. Therefore, it is
fairly evident that our simple test has spawned several noisy and
punctual changes that are difficult to deal with (both for mainte-
nance, flexibility and clarity).
As said before, the AOP technology could be the right approach to
deal with the evolution concern but scenarios similar to the one de-
scribed by our example are difficult to administrate with the current
aspect-oriented frameworks. The main issues that obstacle the use
of the current AOP approaches are: thegranularity of the requested
manipulation and thelocality of the code to manipulate. The re-
quested granularity for the pointcut is too fine, traditional join point
models refer to method invocation in several way whereas we want
to be able to manipulate a single statements or a group of state-
ments in somehow related. This means that we can manipulate
the method execution at its beginning and at its ending but we can
not alter its computational flow requiring the execution of another
statement between two statements of its body.
In a limited way, we could work around the problem by extruding
each group of statements interested by the evolution to the body of
a method and replacing their occurrence with an invocation of such
a method. Moreover we should (separately) define a specific point-
cut (and related advices of course) for each join point that as to be
manipulated. This solution is not always practicable because (ne-
glecting the fact that it forces a manual refactoring of the original
system and it is a little bit tricky):

– it is too fragmentary and therefore error prone when the spec-
trum of the evolution grows in size (how we could be sure
that everything has been taken in consideration?);

– it is tailored on a specific case and does not permit to describe
general pointcuts, for example, it can not be associated to a
trace of the program execution;

– it is not applicable when the code interested by the evolution
can not be promoted to a method, e.g., two interleaved state-
ments or just part of a structured statement or expression;

– it strongly depends on the syntax of the program rather than
on its semantics, that means that we can not use a single
pointcut to describe the join points associated to two methods
with the same behavior but with a different name;

– the removal of a statement is not so immediate and simple.

These problems are due to the poor expressiveness of the pointcut
definition languages and of the related join point models provided
by most of the actual AOP frameworks. Nowadays AOP languages
provide very basic pointcut definition languages that heavily rely
on the structure and syntax of the software application neglecting
its semantics. The developer has to identify and to specify in the
correct way the pointcut by using, what we call thelinguistic pat-
tern matching mechanism; it permits of locating where an advice
should be applied by describing the join points as a mix of refer-
ences to linguistic constructs (e.g., method calls) and of generic
references to their position, e.g., before or after it occurs. There-
fore, it is difficult to define generic, reusable and comprehensible
pointcuts that are not tailored on a specific application. Moreover,
current join point model is too abstract. Join points are associated
to a method call whereas a finer model should be adopted to permit
of altering each single statement.
Similar issues have been raised from several researchers that are
providing their own pointcut language or join point model, some
examples are [17, 7]. More or less each proposal addresses part of

put()/first++

get()[first==1]/first−−

get()/first−−

put()[first==MAX−1]/first++

put()[first<MAX−1]/first++

get()[first>0]/first−−
Empty

Partial

Full

Figure 1:The Statechart of the Bounded Buffer

the problem but often the solution is not so intuitive as it is neces-
sary to be usable.

3. FROM UML DIAGRAMS TO ASPECTS
DEFINITION

Pointcut definition and related problems have been studied by
several researchers [17, 7]. In all their works they propose to use a
more expressive pointcut definition language mainly based on logic
deduction and pattern matching. Notwithstanding the powerfulness
of their proposals, they do not provide a straightforward and easy
approach to pointcut definition. Moreover the degree of abstraction
and the relative granularity seems inadequate for the software evo-
lution.
The question is:does it exist a tool for describing the pointcuts that
is independent of the program syntax, intuitive and easy to use? In
our opinion, theUML [2] methodology with its variety of diagrams
fits the problem. TheUML methodology forces the developer to de-
scribe each software system by using a set of diagrams. These dia-
grams take care of representing every aspect of the system, from its
structure (e.g., class and object diagrams) up to its behavior (e.g.,
statecharts, sequence and activity diagrams). Moreover, these di-
agrams describe the behavior of the system independently of the
syntax adopted in the code but rather in terms of the trace of its
execution. Therefore, these diagrams should provide all the neces-
sary data for the evolutionary purpose, they describe such data as a
whole and abstracting from any syntactic description and, because
of their pictorial nature, they are also characterized by an higher
degree of intuitiveness.
Coming back to thebounded buffer example, the approach pro-
vided byAspectJ, and by other AOP frameworks, does not pro-
vides the necessary granularity and degree of abstraction to permit
its evolution in a straightforward manner. In figure 1, it is shown
the statechart of the bounded buffer. The statechart describes the
behavior of the bounded buffer in terms of its states and of the op-
erations that force a change of state. The transition arrows express
these changes and they are labeled by a triplet<event, condition,
action>. These triplets well identify the portion of code that pro-
vokes the change of state. The couple<event, condition> is used
to express when the corresponding action can be performed, i.e.,
to define which constraints limit the applicability of the action. Of
course, the action represents the code whose execution effectively
provokes the change of state. Theevent it is used to identify the
triggering event but it could be also used (as shown in the reported
diagrams) to locate the action’s code by letting coincide the label
with the name of the method embodying that action. Moreover, a

first−−,lastIsPut=false
get()[first==1 && lastIsPut]/

put()[first==MAX−1]/
first++,lastIsPut=true

first−−,lastIsPut=false
get()[lastIsPut]/

put()/first++,lastIsPut=true

put()[first<MAX−1]/first++,lastIsPut=true

get()[lastIsPut]/first−−,lastIsPut=false

Empty

Partial

Full

Figure 2:The Statechart of the Evolved Bounded Buffer

statechart can describe the behavior of all the instances of a class
or of a specific instance as well. From these considerations, it is
evident that the statechart describes the behavior of the bounded
buffer in a compact and intuitive way providing also several levels
of granularity (e.g., method calls are differentiated according to the
state of the invoking object). Besides, the other diagrams (e.g., the
sequence diagrams) permit, getting similar results, to deal with a
trace of the program execution pointing out, for example, a partic-
ular sequence of method calls otherwise not manageable with the
current pointcut definition language.
Hence, theUML diagrams provide a mechanism clear, intuitive and
powerful for identifying portions of code associated with particu-
lar executions of the program but this is not enough to allow the
evolution of a system: it is still missing a mechanism to determine
how the system has to evolve, of course a mechanism that provides
an high degree of intuitiveness, flexibility and granularity. In our
opinion, theUML diagrams provide again the solution. The evolved
system, as well as the original system, can be modeled by using
theUML diagrams. The difference between such diagrams before
and after the evolution represents the evolution itself. Whereas the
original diagrams determine the code to be adapted, the evolved
diagrams specify how the code has to be adapted, therefore the for-
mer contribute to the pointcuts/join points definition, the latter con-
tribute to the advices definition.
Figure 2 shows the statechart of the evolved bounded buffer. By
comparing the diagrams in figure 1 with the one in figure 2 it is
possible to understand how the new semantics of the methodget()

affects the whole behavior of the class and which code is involved.
Each transition arrow stresses the portion of code subject to the
evolution in a specific state and how it evolves. Just as an example,
we are going to examine how the adaptation impact on the transi-
tion arrow from thepartial state to thepartial state (get() event).
In the original design the arrow was labeled with:

get()[first>0]/first--

whereas, to respect the new requirements, the label changes in:

get()[lastIsPut]/first--,lastIsPut=false.

In this case, the triggering event is still the invocation of the method
get() but both the condition and the action change. Originally, the
methodget() could be invoked when at least a value was con-
tained in the buffer that it is expressed by the conditionfirst>0.
Then this constraint has been overwhelmed by the new semantics
and it has been replaced by: the methodget() can be invoked just
after the invocation of the methodput(); condition expressed by

the boolean flaglastIsPut. Analogously, the action varies to deal
with the boolean flaglastIsPut, that is, it is enriched by the state-
ment:lastIsPut=false.
A criticism to the use of theUML diagrams to describe join points,
pointcuts and advices could be moved to the fact that the diagrams
have a pictorial nature and therefore to extract information from
them is a difficult job. In theRAMSES project, Cazzola et al. [3,4]
showed how to use the design information to evolve a system. They
deal with theUML diagrams not in their pictorial form but encoded
in theXMI [12] language. TheXMI is a standard variant of theXML
language designed to render easy the extraction of features from the
UML diagrams. Moreover, as shown in [4], the use ofXMI consents
to automatically determine the extent of the required evolution by
comparing the diagrams: original and modified.
In [13], Pint́er et al. show how to automatically generate code from
statecharts. A similar approach can be applied to recognize the
code identified by theUML diagrams. In this way, it can be pos-
sible to preprocess the (byte-)code and mark by exploiting meta-
data code annotations (as supported by.NET or Java 1.5) the join
points that could be interested by the evolution. Annotations will
play the role of the hooks, in the code to be adapted, where the ad-
vices will be woven. Annotations have the benefit to be supported
by standard programming environments and to be skipped during
the normal execution, i.e., in this case, when no aspect is woven on
that annotation; therefore they should not add extra penalties during
the execution.

4. RELATED WORKS
Software evolution is a topic widely debated in the last thirty

years, several proposals have been presented each with its merits
and demerits. Aspect-oriented software evolution is a more recent
topic but notwithstanding that several work has already been done,
too much to be faced in this short overview. Hence, we will take
in consideration the works that adopt theUML diagrams for driv-
ing the system evolution and the works that propose a different ap-
proach to pointcuts or join points definition.
Of course, the most related work is theRAMSES project [3] from
which this work has been spawned.RAMSES is a reflective mid-
dleware that uses the design information (theUML diagrams) as
meta-data automatically driving the evolution of a software system
by deciding the extent of the evolution and which code is affected
by such an evolution. The current work can be considered as the
backbone of theRAMSES middleware.
As previously stated many researchers are providing their own ex-
tension to the current aspect-oriented mechanisms (mainly to the
pointcuts definition). Tourẃe et al. [17] have proposed an advanced
pointcut managing environment, based on machine learning tech-
niques. They identify three main problems for the current-day AOP
languages, the first is that the pointcut language is too primitive and
not expressive enough, the second is that pointcuts are very tightly
coupled to an application’s structure and, the last is that develop-
ers are forced to deal with pointcuts at too low level. As a solu-
tion of the above problems they propose to include the notion of
inductively generated pointcuts in the AOP language, in this way
developers can specify pointcuts by using a graphical interface and
the framework will automatically generate the corresponding point-
cuts. Gybels et al. [7] have dealt with the so calledarranged pattern
problem. Crosscutting languages use pattern matching to capture
join points, this is a good technique to describe the intended seman-
tics of a crosscut but it is still dependent of the naming convention,
as highlighted in our work. Gybles et al. have proposed a more
flexible linguistic mechanism to implement crosscutting as patterns
and consequently avoiding the exposed pattern matching problem.

Sillito et al., in [15], have highlighted the importance of usinguse
case diagrams in the pointcut definition, our idea is quite similar
but we do not want to define a novel pointcut definition language,
asAspectU, that needs a special interpreter or to be mapped on
an existing AOP language, asAspectJ. Rather we would like to
extend an existing pointcut language and act on the weaving mech-
anism to supportUML-based join points. Stein et al. [16] have pro-
posed a new design model for the development of aspect-oriented
programs by using theUML. They face the problem of how to de-
sign aspect-oriented crosscutting concerns by extending theUML
by exploiting its standard extension mechanisms, whereas we are
exploiting theUML diagrams to automatically generate the required
system evolutions.

5. FUTURE WORK AND CONCLUSIONS
In this paper, we have analyzed aspect-oriented development tech-

niques in relation with the software evolution problem. In particu-
lar, we have focused our analysis on theAspectJ framework and
its join point model, notwithstanding the work is tailored on a spe-
cific framework many considerations we have done still hold on
many other aspect-oriented frameworks.
From our examination results that it is an hard job to determine the
code that has to be evolved and to manage its evolution with the
join point model adopted byAspectJ. The main problems are the
granularity of the join point model and its dependence of the struc-
ture and syntax of the system to adapt. We have showed that the
UML methodology provides a more flexible, abstract and complete
model to use as a basis for a join point model more adequate for the
software evolution issues.
Our analysis is the first step in the definition of a join point model
based on design information and appropriate for the software evo-
lution. In the future, we are going to develop an extension to the
join point model ofAspectJ based on the presented ideas. We will
also define a pointcut definition mechanism and an aspect weaver
for our join point model. Finally, we will integrate it in theRAM-
SES project.

6. REFERENCES
[1] Keith H. Bennett and V́aclav T. Rajlich. Software

Maintenance and Evolution: a Roadmap. In A. Finkelstein,
editor,The Future of Software Engineering, pages 75–87.
ACM Press, 2000.

[2] Grady Booch, James Rumbaugh, and Ivar Jacobson.The
Unified Modeling Language User Guide. Object Technology
Series. Addison-Wesley, third edition, February 1999.

[3] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake.
Software Evolution through Dynamic Adaptation of Its OO
Design. In H.-D. Ehrich, J.-J. Meyer, and M. D. Ryan,
editors,Objects, Agents and Features: Structuring
Mechanisms for Contemporary Software, LNCS 2975, pages
69–84. Springer, July 2004.

[4] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. System
Evolution through Design Information Evolution: a Case
Study. In W. Dosch and N. Debnath, editors,Proceedings of
the 13th International Conference on Intelligent and
Adaptive Systems and Software Engineering (IASSE 2004),
pages 145–150, Nice, France, on 1st-3rd of July 2004. ISCA.

[5] Shigeru Chiba and Kiyoshi Nakagawa. Josh: An Open
AspectJ-like Language. InProceedings of the 3rd Int’l Conf.
on Aspect-Oriented Software Development (AOSD’04),
pages 102–112, Lancaster, UK, March 2004.

[6] Jim Dowling and Vinny Cahill. The K-Component
Architecture Meta-Model for Self-Adaptive Software. In A.
Yonezawa and S. Matsuoka, editors,Proceedings of
Reflection’2001, LNCS 2192, pages 81–88, Kyoto, Japan,
September 2001. Springer-Verlag.

[7] Kris Gybels and Johan Brichau. Arranging Language
Features for More Robust Pattern-Based Crosscuts. In
Proceedings of the 2nd Int’l Conf. on Aspect-Oriented
Software Development (AOSD’03), pages 60–69, Boston,
Massachusetts, April 2003.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeff Palm, and Bill Griswold. An Overview of AspectJ. In
Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP’01), pages
327–353, Budapest, Hungary, June 2001. ACM Press.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming. In11th
European Conference on Object Oriented Programming
(ECOOP’97), Lecture Notes in Computer Science 1241,
pages 220–242, Helsinki, Finland, June 1997.
Springer-Verlag.

[10] Günter Kniesel, Pascal Costanza, and Michael Austermann.
JMangler - A Powerful Back-End for Aspect-Oriented
Programming. In R. Filman, T. Elrad, S. Clarke, and M.
Akşit, editors,Aspect-oriented Software Development,
chapter 9. Prentice Hall, 2004.

[11] Ramnivas Laddad.AspectJ in Action: Pratical
Aspect-Oriented Programming. Manning Pubblications
Company, 2003.

[12] OMG. OMG-XML Metadata Interchange (XMI)
Specification, v1.2. OMG Modeling and Metadata
Specifications available athttp://www.omg.org, January
2002.

[13] Gergely Pint́er and Istv́an Majzik. Program Code Generation
Based on UML Statechart Models.Periodica Polytechnica
Electrical Engineering, 47(3-4):187–204, 2003.

[14] Andrei Popovici, Thomas Gross, and Gustavo Alonso.
Dynamic Weaving for Aspect Oriented Programming. In
Proceedings of the 1st Int’l Conf. on Aspect-Oriented
Software Development (AOSD’02), pages 141–147,
Enschede, The Netherlands, April 2002.

[15] Jonathan Sillito, Christopher Dutchyn, Andrew D.
Eisenberg, and Kris De Volder. Use Case Level Pointcuts. In
Proceedings of the 18th European Conference on
Object-Oriented Programming (ECOOP’04), Oslo, Norway,
June 2004.

[16] Dominik Stein, Stefan Hanenberg, and Rainer Unland. An
UML-based Aspect-Oriented Design Notation for AspectJ.
In Proceedings of the 1st Int’l Conf. on Aspect-Oriented
Software Development (AOSD’02), pages 106–112,
Enschede, The Netherlands, April 2002.

[17] Tom Tourẃe, Andy Kellens, Wim Vanderperren, and
Frederik Vannieuwenhuyse. Inductively Generated Pointcuts
to Support Refactoring to Aspects. InProceedings of
Software engineering Properties of Languages for Aspect
Technologies (SPLAT’04), Lancaster, UK, March 2004.

[18] Alexandre Vasseur. Dynamic AOP and Runtime Weaving for
Java- How Does AspectWerkz Address It? In R. E. Filman,
M. Haupt, K. Mehner, and M. Mezini, editors,Proceedings
of the 2004 Dynamic Aspect Workshop (DAW’04), pages
135–145, Lancaster, England, March 2004.

http://www.omg.org

	1 Introduction
	2 AOP and Software Evolution
	3 From UML Diagrams to Aspects Definition
	4 Related Works
	5 Future Work and Conclusions
	6 REFERENCES-9pt ##I\

