
Implementing the Essence of Reflection:
a Reflective Run-Time Environment

Massimo Ancona
DISI - Department of Informatics and Computer

Science,
University of Genova, Genova, Italy

ancona@disi.unige.it

Walter Cazzola
DICO - Department of Informatics and

Communication,
University of Milano, Milano, Italy

cazzola@dico.unimi.it

ABSTRACT
Computational reflection provides the developers with a program-
ming mechanism devoted to favorite code extensibility, reuse and
maintenance. Notwithstanding that, it has not achieved developers’
unanimous acceptance and its full potential yet. In our opinion,
this depends on the intrinsic complexity of most of the reflective
approaches that hinders their efficient implementation. The aim of
this paper consists of defining the essence of reflection, that is, to
identify the minimal set of characteristics that a software system
must have to be considered reflective. The consequence is the real-
ization of a run-time environment supporting the essence of reflec-
tion without affecting the programming language and with a mini-
mal impact on the programming system design. This achievement
will improve reflective system performances reducing the impact of
one of the most diffuse criticism about reflection: low performance.

Keywords: Reflection, Run-Time Environment, Compiler Con-
struction.

1. INTRODUCTION
Computational reflection [5] (orreflection for short) has been

around for several years and many researchers have pointed out
its potential and promises. However, it has never penetrated the
programming realm at a level that we consider adequate for its ca-
pabilities. In our opinion, this is due to the absence of a simple
characterization of thereal essence of reflection that may lead to a
minimal and orthogonal (that is,independent of the programming
language and paradigm) implementation.

In this paper we present the minimal requirements to be satisfied
by a programming framework in order to be reasonably considered
reflective and to provide a very simple implementation mechanism.
This set of requirements is the core of the reflective mechanism,
what we call theessence of reflection. Our approach consists in
embedding the essence of reflection into the run-time environment
implementation, freeing the programming language fromreflective
hooks, i.e., clauses and linguistic constructs added to the language
for supporting reflective programming. Moving reflective concepts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

from the programming language to its run-time environment has
some surprising implications:

• Reflection has a minimal impact on the programming lan-
guage clauses

• The implementation of compiler’s front-end does not change
from the original one. Changes needed to support reflection
are moved in the compiler’s back-end.

To validate our idea, we developed from scratch a simple program-
ming system which embeds reflection from its early design stage.
Such a language, inspired byOberon [8], has been namedIo1 [1].

2. COMPUTATIONAL REFLECTION

2.1 Background on Reflection
Reflection is defined as the activity performed by an agent when

doing computations about itself [5]. This activity involves two as-
pects:introspection (state and structure observation) andinterces-
sion (behavior and structure alteration). In a reflective system,
entities (objects, processes, and so on) can be represented by other
entities, usually referred to asmeta-entities. Computation done by
meta-entities (meta-computation) concerns the entities they repre-
sent, calledreferents. Meta-computations are often performed by
trapping the normal computation of their referents. Of course,
meta-entities themselves can be manipulated by meta-meta-enti-
ties, and so on. Thus, a reflective system can be structured in
multiple levels, constituting areflective tower. Base-level entities
(termedbase-entities) perform computations on the entities of the
application domain. Objects in the other levels (termedmeta-levels)
perform computations on the entities residing in the lower levels.

Reification is an essential capability of all reflective systems.
Each level of the reflective tower maintains a set of data structures
representing (reifying) lower level aspects. Each reification must
becausally connected2 to the aspect(s) of the system being reified.
All changes to the reification are reflected in the system, and vice
versa.

Transparency is another key feature of all reflective systems.
Transparency refers to the fact that the entities in each level are
completelyunaware of the presence and workings of entities in

1The nameIo has two motivations: it comes from the Italian pro-
noun “io” (“the self” or “I myself”) which is intrinsically “reflec-
tive” and from the name of a satellite of Jupiter which is a tribute to
the programming languageOberon, that has strongly influenced
Io architecture and which owes its name to a satellite of Neptune.
2A reflective system is causally connected when every change in
the base-level system is reflected in the meta-level and vice versa.

higher levels. In other words, each meta-level is added to the base-
level without modifying the referent level itself.

2.2 The Essence of Reflection
Meta-levels represent the autonomous components of a system,

but their interface and relative interaction role are completely dif-
ferent and forms what we call theessence of reflection.

As stated in [2], the essence of every meta-computation can be
summarized into two logical aspects: (i) the context switch between
base- and meta-level, and (ii) the computation performed by the
meta-entities.

The computational flow is in the base-level when a base-entity
begins a computation. Then, such a computation is trapped by
the corresponding meta-entity and the computational flow moves
to the meta-level (shift-up action) where the meta-entity performs
its computation. Finally, the computational flow goes back to the
base-level (shift-down action) where the base-entity completes the
interrupted computation. The computation performed by the meta-
entity depends on the meta-program, and does not characterize the
reflective mechanism. Instead, both shift-up and down actions are
intrinsically tight to the concept of reflection itself and consent to
introspect/intercede the behavior of the base-level system.

Shift-up and -down mechanism just allows behavioral introspec-
tion and intercession. Structural reflection is not captured by this
mechanism. Structural reflection allows the manipulation of the
system code and it is a feature characterizing a reflective system,
and it is an integral part of our concept of essence of reflection.
To carry out structural reflection, meta-entities need a reification of
the base-level structure, that is, meta-entities must access directly
to the code of the base-level or to a representative of such code.

From these considerations is fairly evident that the essence of
reflection is more a system related feature than a programming lan-
guage characteristic.

3. REFLECTION OUT OF THE LANGUAGE
Moving reflective mechanisms from the programming to the sys-

tem level is a relatively recent trend [3, 7]. Most of the existing
reflective languages support reflection through the introduction of
linguistic hooks3. The main problems to be managed with this
approach are:

• to minimize the execution overheads and performance penal-
ties;

• to achieve a transparent use of reflection improving the re-
usability of the reflective features; and

• to avoid the use of ad hoc programming mechanisms and
languages for the development of the base-level program.

Linguistic hooks are mechanisms to notify the system about when
and where to apply a reflective manipulation. Moreover, it is nec-
essary a MOP which provides a clear interface among levels allow-
ing meta-entities to access and to alter structure and behavior of the
base-entities. By using an implicit MOP, i.e., a MOP that doesn’t
need an explicit linguistic hook in the base-level code, the base-
level’s awareness about the existence of a meta-level is minimized.

3This means that we must introduce specific keywords in the base-
level program to exploit reflection. By Example, inOpenJa-
va [4] the programmer must specify which meta-entity manages
each class through theinstantiates keyword:

public class test instantiates TestMOP;

0t
h

R
ef

le
ct

iv
e

C
om

po
ne

nt

2n
d

R
ef

le
ct

iv
e

C
om

po
ne

nt

HW
Interrupts

1s
t R

ef
le

ct
iv

e
C

om
po

ne
nt

O
S

K
er

ne
l

En
vi

ro
nm

en
t

Io
 R

un
−t

im
e

Io
 In

te
rp

re
te

r

Future Extensions

(shift−down phase 1)

return from virtual interrupt or trap

setup virtual interrupt vectors

return from virtual interrupt or trap
(Shift−down phase 2)

shift−up via virtual interrupts or traps

Present Implementation

Figure 1:Reflective layout of theIo system

Load-time reflection permits of altering the program structure,
during class loading whereas the other approaches apply their changes
either at compile- or at execution-time.Javassist [3] is the most
significant tool supporting load-time reflection inJava. It directly
manipulatesJava bytecode through a kind of reverse engineering
which leads the substitution of specific bytecodes with bytecodes
that are generated by the meta-program. Due to this approach con-
text switching overheads are minimized, since there is not code to
switch to and to be back from. As not expected, but welcome side
effect there is that linguistic hooks are no more needed in the pro-
gram code to support reflective actions.

As many other tools,Javassist is based on specific peculiarity
of the language, i.e.,Java’s capability of dynamically changing
the class loader, in order to achieve its goal. Therefore, load-time
reflection is a good improvement for promoting reflection usability,
but it is not a panacea because it is strongly tight to the language
implementation.

The aim of this work consists of enhancing the load-time re-
flection approach by freeing it from implementation tricks and by
merging the mechanism into the traditional structure of compilers
in order to widen reflection applicability. Embedding the essence
of reflection in the run-time environment seems to be the best ap-
proach for supporting both behavioral and structural reflection with
small overheads, as we show in the rest of the paper.

4. EMBEDDING ESSENCE OF REFLECTION
IN THE RUN-TIME ENVIRONMENT

Io [1] is an experimental, very simple andapparently non re-
flective programming language. Even if theIo programming lan-
guage is free from reflective linguistic hooks, it permits reflective
programming. This is, because we have embedded the essence of
reflection in its run-time environment.

The ability of doing reflective programming with a nonreflective
programming language proves that reflection is a system-wide fea-
ture and does not depend on the programming language [6].

The Io programming system is composed of a front-end which
generates intermediate code, and two back-ends (a virtual machine
and a x86 code generator) both working on the generated interme-
diate code.

Experimenting an interpreted language today has the strategic
implication that the approach can be applied to important existing
programming systems asJava and the.NET family. The use of a
compiled language, on the other hand, by exploiting the dependen-
cies of a real architecture makes the method efficient and usable in
a general frameworks. In this paper, for sake of space, we just
describe the interpreted approach.

The Io run-time environment provides the meta-level program
with both a shift-up and -down mechanism (see section 4.2) and a
complete access to the base-level structure (see section 4.1). For
this reason, we state thatIo implements the essence of reflection.

4.1 Structural Reflection
Structural reflection inIo is achieved by providing the meta-level

program with a complete access to the memory layout of the pro-
grams in the underlying levels. This is done by exposing to the
meta-level the data-structures of theIo interpreter containing the
memory layout of the underlying levels. This data structure (a sort
of array) reserves a slot to each level of the reflective tower.

The memory layout of each single level is composed of four
segments:segment table (containing a sort of symbol table used
to retrieving high-level information),code segment (containing, af-
ter the name, the code of the program),state and register segment
(storing some information about the program execution, e.g., the
program counter), andworking storage segment (representing the
memory used by the program).

The virtual storage layout is addressed via the display array.
Level 0 of the display array is reserved to address the four seg-
ments of the memory layout of the controlled component(s). As
the structural reflection is directly carried out on the memory layout
of the controlled program the causal connection among base- and
meta-level is granted.

The IoENV module — showed below — provides a high-level
interface to the low-level details of the memory layout organization.
IoENV must be imported by each component which wants to access
to the structure of another component.

MODULE IoEnv(Io_Sys_);
(* This module opens all the low-level data structures of the Io in-

terpreter implementing the controlled reflective component to the
importing component. *)

OF Io_Sys USE Io_Word;

GLOBAL StrLng, SgtTop, CodeTop, WsBot, WsTop, pc_, ps_,
dspy_, sgt_, code_, ir_, ...

CONST StrLng=...; SgtTop=...; CodeTop=...;
WsBot=...; WsTop=...;

...
TopNest=15; Layers=2; (* number of reflective layers - 1 *)

TYPE Order = RECORD op, a, b: INTEGER END;
SgtTyp = ARRAY[0..SgtTop] OF SgtElTyp;
CodTyp = ARRAY[0..CodeTop] OF Order;
DspTyp = ARRAY[0..TopNest] OF INTEGER;

...

VAR sgt_: SgtTyp; (* the segment table *)
code_: CodTyp; (* the code area *)
........
t_, b_, hb_: INTEGER; (* tos, base and heapbase registers *)
........
ir_: Order; (* instruction buffer *)
pc_, ps_: INTEGER;(* program counter and status registers *)
.......
dspy_: DspTyp; (* the display *)
.......
ws_: ARRAY[WsBot..WsTop] OF Io_Word;(* working storage *)

BEGIN
END.

Note that, theIo_Sys pragma addresses the reserved use of the
zeroth level of the display.

4.2 Shifting-up and -down Mechanism
Reflection inIo is a mix ofcomponent based andreactive (event-

driven) programming.
Component programming inIo is limited to the construction of

the reflective program: each reflective layer is an independently ex-
ecutable program. Reflective components are independently com-
piled and implicitly interfaced via the shift-up and -down mecha-
nism (see fig. 1).

The shift-up and -down mechanism is based on areactive model
supporting an event-driven programming mechanism in which the
control flow is driven byevents. Event-driven programming op-
erates in response to events, and is based on adispatcher, which
activates theevent handlers: small pieces of code encharged of
performing the actions required by single events. Our events are:
external events encoded into signals feed to the interrupt system
hardware, program actions and computer actions.

The Io run-time environment (IoEnv) maps the reflective shift-
up and -down mechanism over avirtual interrupt management
system emulating a real processor architecture. Event-driven shift-
ing is activated asynchronously by interrupt/trap signals sensed (or
raised) by the virtual machine.

Essentially, the shift-up mechanism ofIo promotes the computa-
tional flow at the meta-level on implicit execution patterns. These
execution patterns are based on frequency (e.g., after each high
level statement, at routine entry/exit or on external interrupts) and
on class of constructs (e.g., at each loop statement, at each assign-
ment and so on). How the shift-up takes place is specified via com-
pilation switches.

The shift-down mechanism is completely under control of the
meta-level program. A call to the predefined routineRETI(n)
forces the control flow to shift down to leveln. The control flow
passes to the lower level component (which continues or starts its
execution) and sets a specialintlev variable of the run-time en-
vironment ton. The control flow will come back at the instruction
after theRETI call, at the next shift-up operation having an interrupt
level greater than or equal tointlev.

4.3 An Example: a Reflective Debugger
We conclude with a simple example showing how to program an

event-driven reflective systems inIo. The example is relative to a
simple line debugger calledDBX able to debug whatever controlled
component: it could be the starting point for implementing a gen-
eral purpose reflective debugger or a sophisticated program tracer.

(* DBX is a simple line debugger. This module sets/resets breakpoints,
changes and inspects global values and may execute the controlled
program by single steps, routines entry/exit or breakpoints. *)

MODULE DBX;

OF DBXDefs USE StrngTyp,pc_,ps_,b_,t_,ShiftDown,PgmDmp,
MiniDump,WriteTables,SetBreakPt,ResetBreakPt,ShowVar,
ModVar,InitPgm;

VAR ch:CHAR; radr:INTEGER;id:StrngTyp;

(* dbx input main body *)

BEGIN
WRITELN(’dbx version 1.0’);
WRITELN(’ps=’,ps_:8,’pc=’,pc_:8,’t=’,t_:8,’b=’,b_:8);
DO
WRITE(’enter command [b,s,...]>’);
READLN(ch);
CASE ch OF

’b’,’B’: (* break *)
READLN(radr);
IF radr>0 THEN SetBreakPt(radr)
ELSE ResetBreakPt(-radr)
FI\

’x’,’X’: WRITELN(’exiting dbx’); HALT\ (* eXit *)
’r’,’R’: InitPgm\ (* Restart *)
’s’,’S’: WRITE(’DBX: id>>>’); READLN(id);

ShowVar(id)\ (* Show global value *)
’m’,’M’: WRITE(’DBX: id>>>’); READLN(id);

ModVar(id)\ (* Modify global value *)
’c’,’C’,’t’,’T’,’e’,’E’,’y’,’Y’: ShiftDown(ch)

(* reactivates pgm until next hook or breakpoint *)
FO;

OD
END.

DBX is activated first of the debugged program which starts its ex-
ecution after the firstShiftDown procedure call. Then it takes the
control after each active breakpoint, or upon routine entries/exits
of after each statement execution, depending on the entered com-
mands.

For illustrating the virtual interrupt system we disclose some de-
tails of moduleDBXDefs. DBXDefs implements high-level inter-
face to theIoEnv module.DBXDefs imports from the system level
moduleIoEnv all the data structure encoding a running component
of theIo run-time environment.SetBreakPt andResetBreakPt
procedures access the code area for setting up interrupt priority of
the chosen instructions (hooks implementation) for shifting-up ac-
tivation/deactivation, whileShiftDown operates the effective shift-
ing operation by calling the predefined routineRETIwith the appro-
priate interrupt level masking.DBXDefs implements all low level
interface used byDBX.

MODULE DBXDefs;
OF IoEnv USE StrngTyp,sgt_,code_,ir_,pc_,ps_,dspy_,...;

GLOBAL ShiftDown,WriteTables,SetBreakPt,ResetBreakPt,...;

CONST
AllHooks = 0; (* intlev for tracing *)
EntRetHooks = 2; (* intlev for returns *)
EntryHooks = 4; (* intlev for entries *)
BreakHooks = 5; (* intlev for breakpoints *)

PROCEDURE SetBreakPt(i: INTEGER);
VAR j: INTEGER;
BEGIN
IF code_[i].op=hookop THEN
WRITELN(’pc:’,i,code_[i].op,code_[i].a,code_[i].b);
BreakNum:=BreakNum+1; (* incr. numb. of breaks *)
code_[i].b:=BreakHooks; (* rise interrupt level *)
WRITELN(’pc:’,i,code_[i].op,code_[i].a,code_[i].b);

ELSE WRITELN(’Not a legal point’,i)
FI

END (* SetBreakPt *);

PROCEDURE ResetBreakPt(i: INTEGER);
VAR j: INTEGER;
BEGIN
IF code_[i].op=hookop THEN
BreakNum:=BreakNum-1; (* decr. numb. of breaks *)
code_[i].b:=AllHooks (* clear int level *)

ELSE WRITELN(’Not a legal point’,i)
FI

END (* ResetBreakPt *);

PROCEDURE ShiftDown(ch: CHAR);

BEGIN
CASE ch OF
’t’,’T’: RETI(AllHooks)\ (* traces each statements *)
’e’,’E’: RETI(EntryHooks)\ (* traces entry points *)
’y’,’Y’: RETI(EntRetHooks)\ (* traces entries and exits *)
’c’,’C’: RETI(BreakHooks) (* stops at ending or breakpoint *)
FO; (* Here enters shift-Up!!! Examine program state *)
IF ps_=running THEN
WRITELN(’DBX: program suspended at’,pc_); MiniDump

ELSIF ps_=ended THEN
WRITELN(’DBX: program terminated’);HALT

ELSE
WRITELN(’DBX: program aborted at’,pc_);
PgmDmp;HALT

FI
END; (* ShiftDown *)

5. BENEFITS AND DRAWBACKS
This section is the complement of section 4, and should help the

reader in dissolving his(her) doubts about the potentialities of our
mechanism.

5.1 Is the Base-Level Free from Linguistic Hooks?
Usually, reflective programming languages adopt linguistic hooks

in the base-level for informing the compiler/interpreter of:

• which associations bind each base-level entity to a specific
entity in the meta-level;

• where the code of the corresponding meta-level entity can be
retrieved from;

• when the execution flow passes from the base-level to the
meta-level, i.e., the granularity of reflection [2].

There is no reason for hard-coding such information in the base-
level program above all when the reflective mechanisms are pro-
vided by the run-time environment, and not by the programming
language.

The Io framework provides a very fine and configurable granu-
larity of reflection. On the basis of user choices, the execution flow
may shift-up before executing each instruction of the controlled
program or upon routine entry/exit.

The meta-level program is specified when the reflective system
is launched and the associations, by default, are at program level.
Such a loose coupling between base- and meta-level programs is
the key idea that consents to free the base-level from linguistic
hooks without reducing the generality of reflection.

Both the coupling and the scheduling of the shift-up and down
actions can be regulated by anXML configuration file. This con-
figuration file is read by the interpreter and used to configure the
behavior of the reflective system on the fly. Moreover, given the
particular architecture of theIo framework, the configuration steps
can be executed by the meta-level program itself.

5.2 Is Our Approach Really Usable?
As shown in section 4.1, theIoENV module opens the struc-

ture of the controlled program up to the meta-level program. The
access to each element (e.g., variables, procedures and so on) is
achieved by using the low-level data structures of the interpreter,
such as the symbol table and the execution stack and heap. A sim-
ilar approach provides the meta-level programmer with a flexible
and powerful mechanism which makes easier and faster to develop
system-wide reflective applications such as self-debuggers and self-
auditing tools. Unfortunately, the flexibility of the reflective mech-

anism and its implementation simplicity have the cost of reducing
the readability of the meta-level program.

Programmers rarely need a so fine grain of structural reflection,
and surely many of them are not at their ease in dealing with such
a kind of details. To overcome this problem and to widen the
framework usability we have written an external module (a library),
namedIoReification, which provides the meta-level program-
mer with a more abstract mechanism to access the structure of the
base-level program than theIoEnv module. TheIoReification
module wraps theIoENV module (therefore it also wraps the inner
representation of the base-level program) and provides a high-level
API for manipulating it.

TheIoReification module hides most of the low-level struc-
tural details providing the meta-level programmer with a course
grain interface to structural reflection. A simple example of the
approach used inIoReification is the procedureShiftDown de-
fined in the moduleDBXDefs, which encapsulates and hides the
low-level datapc_, ps_ andRETI. Our IoReification module
is still simple but:

• it proves the flexibility of the approach which permits of
building different abstraction levels starting from a low-level
representation, and

• it renders the approach usable at different applications levels
(e.g., system-wide, user own application and so on).

5.3 Efficiency Considerations
Our approach offers two advantages: simplicity of implementa-

tion and efficiency.
The simplicity of our method is measured by the augmented size

of the reflective interpreter over the nonreflective one: it is only the
19% larger in number of source lines (8% for data definition and
22% for the instructions). The main reasons of this success are the
vectorization of the data structures encoding the reflective tower
into a simple array structure of the virtual machine and the exten-
sion of the display array (dspy_[0]) for having a fast direct access
to the interpreter data structures from each reflective component.

About the execution time we have the following results:

• the overhead in execution time of nonreflective components
with the reflective interpreter is only the 3% slower than that
obtained with a nonreflective interpreter;

• The time for executing a monitored component with the max-
imum density of shift-up hooks (after each source level state-
ment) is about the 11% of the time obtained without hooks.
The controlling component is doing nothing (it returns the
control by an immediate shift-down);

• The time for executing a monitored component with a medium
density of shift-up hooks (after each routine/method entry) is
about the 2% of the time obtained without hooks.

The above values are normalized with respect the execution of
the same program and the same reflective interpreter with no hooks
inserted.

6. CONCLUSIONS AND FUTURE WORKS
Embedding the essence of reflection in the run-time environment

of a programming language has provided us with many advantages
with respect to other reflective approaches. The most evident are
the complete separation between base- and meta-level programs
and a complete transparence of behavior. A less evident benefit is
represented by the presence of a real reflective tower implemented

inside the language back-end. This tower helps the complete sep-
aration of concerns and grants the access to the structural aspect
of each program. Moreover, the mechanism allow a very flexible
shift-up and -down mechanism with a finer and highly configurable
granularity of reflection [2]. These characteristics allow building
reflective components able to do computations about a general class
of basic components e.g., reflective debuggers, with an extreme
flexibility and efficiency.

Notwithstanding that the main concern about reflection still re-
mains: how simple could be made the MOP in order to open up
low level details (e.g., the virtual machine architecture and virtual
code) without complicating their reflective manipulation?

In our opinion, this kind of gambling represents the most chal-
lenging difficulty on the way of a wide success and real usage of
reflective mechanisms and systems.

Our method, however has the advantage to have clearly outlined
the basic requirements and the core of every reflective system (the
essence of reflection), thus simplifying the work that still has to be
done. However this fact alone is not sufficient to grant success in
diffusing the use of reflective paradigm.

At the end, we mention that the idea of using a prototypal frame-
work (Io), which is not a toy, but it is still relative simple to support
rapid prototyping and fast modifications, has been revealed essen-
tial in the process of understanding reflection and its basic mecha-
nisms and relation with programming systems. Such a comprehen-
sion of reflection would be difficult to get looking at complex de-
velopment frameworks, asJava andC++. The acquired know-how
makes more simple to embed the essence of reflection also on these
frameworks. Future works are just related to move the essence of
reflection in the GNU back-end4 and then rendering reflective the
languages whose front-end supports the GNU back-end. .

7. REFERENCES
[1] M. Ancona and W. Cazzola. The Programming LanguageIo.

TR DISI-TR-04-02, DISI, Universit̀a di Genova, May 2002.
[2] W. Cazzola. Evaluation of Object-Oriented Reflective Models.

In Proceedings of ECOOP Workshop on Reflective
Object-Oriented Programming and Systems, Brussels,
Belgium, July 1998.

[3] S. Chiba. Load-Time Structural Reflection inJava. In
E. Bertino, editor,Proceedings of ECOOP’2000, LNCS 1850,
pages 313–336, Cannes, France, June 2000. Springer-Verlag.

[4] S. Chiba, M. Tatsubori, M.-O. Killijian, and K. Itano.
OpenJava: A Class-based Macro System for Java. In
W. Cazzola, R. J. Stroud, and F. Tisato, editors,Reflection and
Software Engineering, LNCS 1826, pages 119–135.
Springer-Verlag, June 2000.

[5] P. Maes. Concepts and Experiments in Computational
Reflection. In N. K. Meyrowitz, editor,Proceedings of
OOPSLA’87, pages 147–156, Orlando, Florida, USA, Oct.
1987. ACM.

[6] J. M. Sobel and D. P. Friedman. An Introduction to
Reflection-Oriented Programming. InProceedings of
Reflection’96, San Francisco, CA, USA, Apr. 1996.

[7] I. Welch and R. J. Stroud. Kava - A Reflective Java Based on
Bytecode Rewriting. In W. Cazzola, R. J. Stroud, and
F. Tisato, editors,Reflection and Software Engineering, LNCS
1826, pages 157–169. Springer-Verlag, June 2000.

[8] N. Wirth and M. Reiser.Programming inOberon - Steps
BeyondPascal andModula. Addison-Wesley, 1992.

4GCC – GNU Compiler Collection project athttp://www.gnu.
org/software/gcc/gcc.html

http://www.gnu.org/software/gcc/gcc.html
http://www.gnu.org/software/gcc/gcc.html

	1 Introduction
	2 Computational Reflection
	2.1 Background on Reflection
	2.2 The Essence of Reflection

	3 Reflection out of the Language
	4 Embedding Essence of Reflection in the Run-Time Environment
	4.1 Structural Reflection
	4.2 Shifting-up and -down Mechanism
	4.3 An Example: a Reflective Debugger

	5 Benefits and Drawbacks
	5.1 Is the Base-Level Free from Linguistic Hooks?
	5.2 Is Our Approach Really Usable?
	5.3 Efficiency Considerations

	6 Conclusions and Future Works
	7 REFERENCES-9pt ##I\

