
SmartMethod: an Efficient Replacement for Method

Walter Cazzola
DICo - Department of Informatics and Communication,

Università degli Studi di Milano

cazzola@dico.unimi.it

ABSTRACT
In the last few years the interest in reflection has grown and many
modern programming languages/architectures have provided the
programmer with reflective mechanisms. As well as any other
novelty also reflection has detractors. They rightly or wrongly
accuse reflection to be too inefficient to be used with real profit.
In this work, we have investigated about the performance of Ja-
va reflection library (especially of the class Method and of its
method invoke) and realized a mechanism which improves its per-
formances. Our mechanism consists of a class, named SmartMethod
and of a parser contributing to transform reflective invocations into
direct call carried out by the standard invocation mechanism of Ja-
va. The SmartMethod class is compliant — that is, it provides
exactly the same services —, with the class Method of the stan-
dard Java core reflection library but it provides a more efficient
reflective method invocation.
Keywords: Reflection, Optimization, Java, Java Core Reflec-
tion Library.

1. INTRODUCTION
In the last few years many researchers (see for example [3, 15])

stressed the relevance of reflection, reflective behavior and meta-
level architectures. This growing interest in reflection is also tes-
tified by the fact that both Java [1] and .NET [8] architectures,
— that is, two of the most used programming architectures — are
intrinsically reflective [12] or provide the programmer with many
reflective features (see the Java core library [13] and [6] for an
overview of the reflective features of Java).

Reflection is defined as the activity performed by an agent when
doing computations about itself [10]. This activity involves several
aspects: the most used are introspection and intercession. They
are defined as the ability for a program to respectively observe and
modify its own structure, state and execution.

Modern programming languages/environments such as Java and
.NET provide the programmer with limited reflective capabilities as
a mix of introspection and intercession. Generally, the program-
mer can dynamically reify some structural aspect of his program as
methods, and classes (i.e., he can observe the program structure);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

then he can discretionary use such reifications for invoking methods
and creating new objects (i.e., he can modify the program behav-
ior). Unfortunately, coming into the limelight both merits and flaws
of reflection are more evident. The most raised issue against the use
of a reflective solution is related to its performance. Obviously, in-
trospection and intercession are expensive tasks when carried out
during program execution. Many attempts have been done to im-
prove this situation, most of them are related to move reflection
from run-time to compile-time [4, 11] or load-time [5]. But, there
are still many situations where the introspection and intercession
must take place at run-time. e.g., in remote communications where
we are looking for unknown services.

In this work, we have focused our attention on the Java lan-
guage, and on the efficiency of its reflection library [13]. In par-
ticular we have investigated how to improve the performance of
method invocation through reifications (that is, we have improved
the efficiency of the method invoke of the Method class) and im-
plemented a class, named SmartMethod with all the functionalities
of the corresponding class Method of the Java reflection library
but improving the efficiency of method invocation.

The rest of the paper is organized as follows. Section 2 shows
the basic idea for optimizing the Java method invoke, whereas
section 3 goes deepen in the realization. Section 4 gives a glance at
the performance improvements. Finally in section 5 we draw our
conclusions and propose some future works.

2. UNFOLDING METHOD LOOKUP
The Java core reflection library [13] provides the programmer

with classes (Field, Method, and so on) whose instances reify spe-
cific aspects (that is, fields, methods and so on) of a class. Such
aspects are reified by invoking specific methods (e.g., getFields
for reifying all the fields of a class) on a reification of a Java class
(that is, an instance of the class Class).

In this work, we focus our attention on the Method class. Each
of its instances reifies all data related to a given method (i.e., its
name, its argument types, its return type and so on). The reflective
invocation of the method:

���������	��
����� testMethod(� ������ f);

defined by the class TestClass is carried out by the following
snippet of code:

Class c = Class.forName("TestClass");
Method m =

c.getMethod("testMethod", ����� Class[]{Float.TYPE});
m.invoke(c.newInstance(), ����� Object[]{����� Float(7)});

The Method class invests the method invoke with the ability of
really invoking the reified method.

As explained in the API documentation, the invoke invokes the
underlying method represented by ������� (an instance of Method),
on the specified object with the specified parameters. Individual
parameters are automatically unwrapped to match primitive for-
mal parameters, and both primitive and reference parameters are
subjected to method invocation conversions as necessary. The un-
derlying method is invoked using dynamic method lookup (cf. [7]
section 15.12.4.4); in particular, dynamic dispatching based on the
run-time type of the target object will occur.

The described approach implies that a lot of execution time is
spent for simulating the method lookup, for checking the method
compatibility and, above all, for dispatching the method call to the
referring object in accordance with the fact that the method is vir-
tual, inherited or invoked through an interface. This fact is fairly
evident comparing the time spent in invoking a method through a
class with the time spent by using an interface (see table 1).

Our idea for speeding up method invocation is quite simple and
consists of letting the compiler resolve method overloading for us
and delegating the real invocation to the standard invocation mech-
anism (not to the reflective one).

To realize this mechanism, we have stolen the stub idea from the
Java RMI [14]. Each class is associated with a stub, whose name
is after the class name, implementing an ad hoc invoke method tai-
lored on the class and implementing also some ancillary routines.
This ancillary invoke, called smartInvoke, constructs a per-class
structures that renders the method dispatch more efficient providing
a binding for each method defined by the class to its direct invoca-
tion. For example, the stub associated to our TestClass provides
the following mapping for the method testMethod:

���������	� �	�	���	� TestClass_InvokeStub
��
 � � � ��� SmartInvokeStub {

���������	� Object smartInvoke(Object o, � � � h, Object[] a){� � ������ (h) {
����� � -1822788606:
((TestClass)o).testMethod(

((Float)a[0]).floatValue());� � ����� � � ����� ;

/* similarly, the removed code would show the invoca-
tion of the other methods defined or inherited by the
TestClass class. */

} /* end switch */
}

}

The ancillary smartInvoke, basically, is a �	��������� indexed on
the hashcode of the method that in somehow can be called by an
instance of the class. This means that it is indexed on all ����������� ,
����������������� , default-access and ������ �!���� methods both defined and
inherited by the class. This fact could sound weird but the Ja-
va core reflection library permits, thanks to the setAccessible

method, a metaprogrammer to circumvent the visibility modifier
declared by the programmer.

3.
"$#&%$')(+*

OPTIMIZATION
The described idea is embedded in a more pretentious project

consisting in optimizing the whole Java core reflection library.
The optimization of method invocation has been realized by: (i)
writing a class, named SmartMethod, which uses the described
mechanism and (ii) a parser which unfolds the method invocation

and builds the described stubs. The class SmartMethod is de-
scribed in section 3.1 whereas in section 3.2 we describe how the
parser works.

3.1 ,.-0/214325 vs 6�7980:;/<,.-0/214325
We have built a class, named SmartMethod which provides the

programmer with exactly all the functionalities provided by the
Method class. This means, as shown in the code below, that the
public interface of the class SmartMethod defines the same meth-
ods, with the same signature as the class Method.

� ���>=�	? � cazzolaw.lang.reflect;

�A@�� �B��� java.lang.reflect.Member;
�A@�� �B��� java.lang.reflect.AccessibleObject;

���������	� �	�	���	� SmartMethod
��
 � � � ��� AccessibleObject �A@���� � @ � � ��� Member {

/* SmartMethod constructor */
���������	� SmartMethod(String m, Class[] c, Class d) {...}

/* Methods inherited from AccessibleObject */
���������	�C������� �	�
����� setAccessible(AccessibleObject[] a,

� ���	� � � � flag) �>����� � � SecurityException {...}
���������	��
����� setAccessible(� ���	� � � � flag)

�>����� � � SecurityException {...}
���������	� � ���	� � � � isAccessible() {� � ����� � _accessible;}

/* Methods in the Member interface */
���������	� Class getDeclaringClass(){ � � ����� � declaringClass;}
���������	� � � � getModifiers() { � � ����� � _modifiers;}
���������	� String getName() { � � ����� � methodName;}

/* Methods defined in Method */
���������	� � ���	� � � � equals(Object obj) {...}
���������	� Class[] getExceptionTypes() { � � ����� � excpTypes;}
���������	� Class[] getParameterTypes() { � � ����� � argsTypes;}
���������	� Class getReturnType() { � � ����� � returnClass;}
���������	� � � � hashCode() { � � ����� � code;}
���������	� toString() {...}

���������	� Object invoke(Object obj, Object[] args)
�>����� � � InvocationTargetException,
IllegalArgumentException,IllegalAccessException {...}

}

In the standard Java core reflection library, method reification
is the result of class inspection — that is, the class Class provides
some methods (getMethod, getMethods, getDeclaredMethod,
and getDeclaredMethods) which look at a class for declared and
inherited methods —, hence no explicit Method creation is neither
necessary nor allowed. Since we want to confine the modifications
to the java.lang.reflect library and we do not want to provide
the class with extra functionality, we cannot adopt class inspection
as a way for reifying methods but we had to provide the program-
mer with a public constructor for the SmartMethod class rather
than a constructor with default access right as for the Method class.

The SmartMethod class as well as the Method class must pro-
vide a general approach to method reification, therefore it cannot be
statically bound to the stubs or cannot directly embed them. There-
fore, the SmartMethod class is bound to the stub by a dynamic
clientship that is perfected when a method is reified (that is, when
an instance of the SmartMethod class is created).

The constructor knows which is the declaring class of the method
to be reified (information passed to the constructor of the Method

class as well) from this information it is able to determine which
is the stub tailored on such a class and to get an instance of such a

stub.

���������	� SmartMethod(String m, Class[] c, Class d) {
stub = (SmartInvokeStub)((Class.forName(

d.getName()+"_InvokeStub")).newInstance());
code = stub.hashCode();
returnClass = stub.smartGetReturnType(code);
_modifiers = stub.smartGetModifiers(code);
_exceptions = stub.smartGetExceptionsType(code);
_accessible = ���	� � ;
}

As visible in the code of the constructor above, the name of the
class of the stub is built from the name of its referent class by ap-
pending the string _InvokeStub. At the moment, the management
of the possible name clashing associated with this solution is out of
our scope.

The stub provides the method reification with a connection to the
low-level method invocation unfolding. This separation grants the
flexibility of the approach because free the implementation of the
SmartMethod class from the knowledge of the static type of the
caller but it is also one of its flaws, because we invoke stub’s meth-
ods by exploiting late binding and therefore by resolving method
dispatch to the stub at run-time.

���������	� Object invoke(Object obj, Object[] args) {� � ����� � stub.smartInvoke(obj, code, args);
}

The invoke method (code reported above) is just an interface to
the smartInvoke defined in the stub and linked at construction-
time. Similarly, all information about the method (return type, ex-
ception types, and so on) are encapsulated in the stub (thanks to
the ancillary routines cited before) and can be retrieved, when the
method is reified, efficiently as well.

At the moment, the constructor declaration is the only difference
in the interface and therefore in the use of the SmartMethod class
with respect to the Method class. In the future, we are going to
extend the Class class with the necessary mechanism for reifying
the methods as SmartMethod instances as well. This fact apart,
the SmartMethod class provides the programmer with the same
functionalities as the Method class and it is subjected to the same
restrictions. This means that we can reify the same category of
methods both using Method and SmartMethod and the reflective
invocation can be inhibited by revoking the ReflectPermission

through a security manager as well.

3.2 Stub Generation
We provide a tool, named SmartInvokeC, for the automatic gen-

eration of the stub of a class from its bytecode. Therefore, our ap-
proach to method reification is independent of the availability of the
source code of the declaring class, but it only needs the bytecode
of the class1.

The SmartInvokeC inspects the bytecode of a class looking for
information about the methods that are invocable, that is, as said
before, all the methods, independently of their right accesses, de-
clared by one of the classes in the class hierarchy of the inspected

1At the moment, we are investigating a mechanism for generat-
ing the stub when the class is loaded by the JVM without affect-
ing the efficiency. With such a mechanism we can benefit of the
SmartMethod improvements also invoking methods whose byte-
code is available only at run-time.

class. Inspection takes place recursively on each class c in the
class hierarchy by collecting all its declared methods; this raking of
methods is carried out by exploiting the standard reflective mech-
anism (i.e., the getDeclaredMethods method) retrieving all the
methods (both ����������� , ����������������� , default-access and ������ �!����)
declared in the class (see the code of the getMethodsList method,
reported below).

The Java method invocation mechanism establishes that a method
matching the signature of the invoked method whose visibility is
not hidden by the definition of another method with the same sig-
nature is activated. Therefore, methods can be called only when
the dynamic type of the calling object corresponds to a class whose
visibility is not obscured by another class which defines a method
with the same signature as the invoked method, in this case the
overriding method is invoked. This behavior is also granted with
our reflective invocation by removing the overridden methods from
the list of the invocable methods and delegating their activation to
the dynamic lookup provided by the direct invocation of Java.

Methods collection and classification is realized by the following
snippet of code:

������� � ��� � � Method[] getMethodsList() {
Class _class = Class.forName(ClassName);
Package _package = _class.getPackage();
Package _spackage = _package;
Method[] _ms;
Vector _vm = ����� Vector(), _vmp = ����� Vector();
� � ��� � (_class != � �����) {
_ms = _class.getDeclaredMethods();
� �B� (� � � i=0;i<_ms.length; i++)
� � !(_vm.contains(_ms[i])||_vmp.contains(_ms[i]))
� � Modifier.isPrivate(_ms[i].getModifiers()) ||
(Modifier.isProtected(_ms[i].getModifiers()) &&
(!isTheSamePackage(_package, _spackage)))

_vmp.add(_ms[i]);
� ��� � _vm.add(_ms[i]);

_class = _class.getSuperclass();
� � (_class != � �����) _spackage=_class.getPackage();

}
Method[] _ml = ����� Method[_vm.size()+_vmp.size()];
_publicMembers = _vm.size();
� �B� (� � � j=0; j<_vm.size(); j++)

_ml[j] = (Method)_vm.elementAt(j);
� �B� (� � � j=0; j<_vmp.size();j++)
_ml[j+_publicMembers] = (Method)_vmp.elementAt(j);� � ����� � _ml;

}

Collected methods are classified in two groups after their access
rights. The former group collects the ����������� and default-access
methods and the methods defined as ����������������� in the same pack-
age of the examined class; whereas the second collects the remain-
ing methods. We distinguish the methods in these two categories
because the methods in the first category can be invoked without
restrictions. On the contrary, the invocation of the methods in the
second category must obey to some restrictions due to their access
qualification. We have gone round such restrictions by delegating
their invocation to the Java Native Interface (JNI) [9]. C/C++ pro-
grams can invoke Java methods without undergoing to the access
restrictions defined by the Java class. Notwithstanding that to find
an application for the reflective invocation of ������ �!���� methods is
not trivial, we have implemented it for compatibility with the stan-
dard reflective invocation.

The whole mechanism for fast retrieving and invoking a method
is based on hashcoding the information necessary to discriminate
such a method from the others. The method signature (that is, its

SmartMethod

effective
call

expected
call

reflective
invocation

SmartInvokeC

Javac

.java

.java

.java

.class

.class

.class

.class
.class

.class.class

.class

.class

A

C

A

B

C

A_InvokeStub

B_InvokeStub

B

C_InvokeStub

m.invoke(b,null)

compile−time

run−time
m

b

stub

Figure 1: Compiling the stubs and reflective method invocation through the stubs

name and the classes of its arguments) contains all the necessary
information for discriminating methods. We do not consider the
method return type because it does not contribute to the overload-
ing resolution (that is Java does not allow the definition of two
methods with the same name and arguments but different return
type). The hashcodes associated with each method are calculated
by the SmartInvokeC tool during the bytecode analysis. All the
hashcodes are calculated from the method signature and embed-
ded in the stub (in particular, in the method hashCode of the stub).
Conflicts are managed by associating a manually incremented sub-
hashcode with the calculated one. At method reification the cor-
responding hashcode is retrieved from the stub. This mechanism
guarantees the unicity of the hashcode, its fast retrieving and there-
fore a perfect and fast mechanism for discriminating the invocable
methods in the stub.

Figure 1 summarizes how compilation takes place and how the
reflective method invocation exploits the stub. As usual, bytecodes
are generated from the classes by the Java compiler (e.g., javac).
From the bytecode of the classes, the SmartInvokeC creates and
compiles the corresponding stub classes. At run-time, method reifi-
cation associate the reified method with the stub of the class declar-
ing the reified method. The reflective invocation of a method through
the invoke method of the SmartMethod class is hijacked to the
stub and after to the class declaring such a method rather than di-
rectly to declaring class. The intermediated step permits to trans-
form the reflective call in a direct call as explained in the previous
sections.

4. PERFORMANCE EVALUATION
We have quantified the performances of the invoke of the class

SmartMethod with respect to standard Java method invocation
and the method invoke of the Java core reflection library. The
aim of our experiments consists of measuring how long standard
Java method invocation and both kind of reflective invocations
take to invoke a method. All the experiments were performed on
an Intel R© P4@2.2 GHz with 512Mb RAM running Linux (kernel
version 2.4.21), and jdk v1.4.2.

The scenario of our experiments is composed of a class which
implements a simple interface. This class defines some dummy
methods; these methods are distinguishable for their access right
(����������� , ����������������� , default-access or ������ �!����). Methods taken
in consideration for the experiments — following the hints given
by the Sun’s FAQ on Java HotSpot VM benchmarking available at

java.sun.com/docs/hotspot/PerformanceFAQ.html —, have
an argument, compute some values by using such an argument and
return the computed value. In this way, we avoid the optimizations
carried out by HotSpot as short method inlining and the removal of
dead code that will not render germane the comparison with the di-
rect method call. Basically, the benchmarking has been carried out
by repeatedly invoking on a class (or on an interface) these methods
and then by calculating the average of the achieved time.

Table 1 summarizes the results of our experiments. The sec-
ond column represents how long the standard method invocation
takes to invoke a ����������� method. Similarly, the third and the
forth columns show how long takes the same invocation carried
out by using, respectively, the standard invoke and our invoke.
The experiments have been done by invoking the methods through
a class (second and third rows) and through an interface (fifth and
sixth rows) and both enabling and disabling the HotSpot just-in-
time compiler.

Calling a method on a class results nearly 1.3 times faster by
using our approach with respect to the standard invoke. Notwith-
standing this improvement, as expected (see section 2), we got the
best by invoking methods on an interface. In this case, our approach
is about forteen times faster than standard invoke. However, we
are still far from getting the same performance as by using direct
invocation.

The table, for sake of space, summarizes the results only related
to the invocation of ����������� methods. We have gotten quite similar
figures invoking ����������������� and default-access methods. On the
contrary, less good results have been gotten by invoking ������ �!����
methods. This fact can be ascribed to the use of JNI for working
around the access protection, a further improvement should be got-
ten by writing pure Java code which directly accesses to the JVM

call via a class direct call invoke smart-invoke
HotSpot 0.0000867 0.000204 0.000154
HotSpot (disabled) 0.0006602 0.0017125 0.0012946

call via an interface direct call invoke smart-invoke
HotSpot 0.0001213 0.0027938 0.0002116
HotSpot (disabled) 0.000606 0.0039545 0.0012208

? all the reported time are expressed in milliseconds.

Table 1: Direct call, invoke and smart invoke in compar-
ison.

for invoking the ������ �!���� methods.

5. CONCLUSIONS
In this paper we have exposed our idea for optimizing the per-

formances of the reflective method invocation in Java. Basically
the idea consists in delegating the method lookup and the late bind-
ing to the standard invocation mechanism provided by Java. We
have also proved the effectiveness of our solution by implementing
it as a class — named SmartMethod — which provides the same
functionalities (especially, method reification and invocation) of the
Method class and a parser which unfolds the method lookup mech-
anism allowing the direct call of each method through the instances
of SmartMethod.

A different approach to render more efficient the invoke method
consists of having a pure object-oriented implementation of the
Method class. Basically, the class Method maintains the same in-
terface but it is an abstract class and its subclasses will embed, in
the implementation of their invoke method, the direct call to the
method they are reifying. Therefore, instances of Method are never
created, instances of its subclasses are created and used instead.

Surely this approach could be more elegant and flexible than the
one proposed in this paper and probably it gives the same benefits
or better in terms of performance but it has two major problems that
have pressed us to not consider this approach. First, this approach
presupposes to directly instantiate the class reifying the method to
invoke rather than instantiate the class Method with the right pa-
rameters (it does not provide the programmer with a uniform ap-
proach to method reification). Second, surely the first in impor-
tance, we have to pay what we gain in terms of performance with
an elevate proliferation of classes (a new class for each method).
Besides, we still need a parser which examines the classes and gen-
erates all the concrete sub-classes of the Method class.

Our approach is still far from being perfect. Most of the time
which separates a direct invocation from our reflective invocation
are lost in type conversions (we must cast the arguments from Object

to the type expected by the method), in binding the SmartMethod

with the stub of the right class (late binding) and in mangling Java
code with C++ code through the JNI interface (C++ permits to work
around invocation restrictions, e.g., it permits to invoke ������ �!����
methods). We are studying a way to overcome these flaws and ren-
der more and more efficient our reflective invocation. We are also
extending the approach to the Constructor, and Field classes of
the Java core reflection library.

We are also investigating the impact of our improvements in ex-
isting reflective applications. We think that the research area on
reflective and adaptive middleware should greatly benefit from per-
formance improvements in the reflective invocation and we would
like to prove that experimenting on the mChaRM [2] reflective mid-
dleware.

Acknowledgments
The author wishes to thank Angelika Langer because the basic
idea of delegating method lookup at the standard mechanism rose
arguing with her about reflection performances at rOOts’02 in
Bergen. The author wishes also to thank Giovanni Lagorio because
the spare-time spent with him has solved many technical and theo-
retical problems tied to Java and its specification.

6. REFERENCES
[1] K. Arnold and J. Gosling. The Java Programming Language.

The Java Series ... from the Source. Addison-Wesley,
Reading, Massachusetts, second edition, Dec. 1997.

[2] W. Cazzola. Remote Method Invocation as a First-Class
Citizen. Distributed Computing, 2003. To Appear.

[3] W. Cazzola, R. J. Stroud, and F. Tisato, editors. Reflection
and Software Engineering, volume 1826 of Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, Germany,
June 2000.

[4] S. Chiba. A Meta-Object Protocol for C++. In Proceedings of
the 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’95), volume 30 of Sigplan Notices, pages
285–299, Austin, Texas, USA, Oct. 1995. ACM.

[5] S. Chiba. Load-Time Structural Reflection in Java. In
E. Bertino, editor, Proceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP’2000), LNCS 1850, pages 313–336, Cannes,
France, June 2000. Springer-Verlag.

[6] I. R. Forman and N. B. Forman. Java Reflection. Manning
Publications, 2004.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. The Java Series ... from the Source.
Addison-Wesley, Reading, Massachusetts, second edition,
2000.

[8] K. Hoffman, J. Gabriel, D. Gosnell, J. Hasan, C. Holm,
E. Musters, J. Narkiewickz, J. Schenken, T. Thangarathinam,
S. Wylie, and J. Ortiz. Professional .NET Framework. Wrox
Press., 2001.

[9] S. Liang. Java Native Interface: Programmer’s Guide and
Specification. The Java Series ... from the Source.
Addison-Wesley, Reading, Massachusetts, June 1999.

[10] P. Maes. Concepts and Experiments in Computational
Reflection. In N. K. Meyrowitz, editor, Proceedings of the
2nd Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 of
Sigplan Notices, pages 147–156, Orlando, Florida, USA,
Oct. 1987. ACM.

[11] H. Masuhara and A. Yonezawa. Design and Partial
Evaluation of Meta-objects for a Concurrent Reflective
Language. In E. Jul, editor, Proceedings of the 12th
European Conference on Object-Oriented Programming
(ECOOP’98), LNCS 1445, pages 418–439. Springer-Verlag,
July 1998.

[12] Microsoft Corporation. .NET Framework Developer’s Guide:
Reflection Overview. Technical report, Microsoft Developer
Network (MSDN), 2003. http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpguid%

e/html/cpconreflectionoverview.asp.
[13] SUN Microsystems. JavaTM Core Reflection API and

Specification. Technical report, SUN Microsystems, Feb.
1997.

[14] SUN Microsystems. JavaTM Remote Method Invocation -
Distributed Computing for Java. White paper, SUN
Microsystems, 1998. Internet Publication -
http://www.sun.com.

[15] A. Yonezawa and S. Matsuoka, editors. Proceedings of 3rd
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection’2001),
volume 2192 of Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, Sept. 2001.

