
EnhancingJava to Support Object Groups

Walter Cazzola Massimo Ancona Fabio Canepa Massimo Mancini Vanja Siccardi

DISI-Department of Informatics and Computer Science
University of Genova, Italy

E-mail:{cazzola|ancona}@disi.unige.it

Abstract

In this paper we show how to enhancing theJava RMI
framework to support object groups. The package we have
developed allows programmers to dynamically deal with
groups of servers all implementing the same interface. Our
group mechanism can be used both to improve reliability
preventing system failures and to implement processor farm
parallelism. Each service request dispatched to an object
group returns all the values computed by the group mem-
bers permitting the implementation of both kind of appli-
cations. Moreover, these approaches differ both over com-
putations failure and over the semantic of the implemented
interface. Our extension is achieved enriching the classic
RMI framework and the existingRMI registry with new
functionalities. From user’s point of view the multicast RMI
acts just like the traditional RMI system, and really the same
architecture has been used.

1. Introduction

Client/server object models focus their attention on im-
proving portability, interoperability and reusability of dis-
tributed software components and applications. Unfortu-
nately, most of them do not provide an adequate support for
the development of reliable and high-available applications.
This constitutes a major limitation for many modern indus-
trial applications, for which requirements such as reliability
and high-availability are gaining increasing importance. In
the absence of any kind of systematic support, building ap-
plications capable to deal with partial failures such as pro-
cess crashes or to subdivide the load-work among several
processes is an error-prone and time-consuming task.

In order to overcome these difficulties, object
groups [11] have been proposed. In the object group
approach, many servers provide the same functionalities,
— i.e., they are based on the same interface. Clients
interact with object groups in a transparent way, as if
they were a single, and non-replicated object. Objects

forming a group cooperate in order to provide a reliable
and high-available service to their clients. This cooperation
is established through the facilities offered by agroup
communication service (GCS) [4, 9], that enables the
creation of dynamic groups of objects that communicate
through reliable multicast primitives. Objects forming a
group are kept informed about the current membership of
the group itself, that may vary at run-time due to accidental
events such as failures and repairs, or to voluntary requests
to join or disjoin the group. Object groups can also be
used to gather objects which implement the same interface,
but whose methods have a different semantics, to realize
processor farm parallelism[10] or to prevent from logical
failures [2].

Nowadays,Java and its class library are one of the
most used frameworks to realize distributed applications. It
well supports point-to-point communication through the na-
tive RMI mechanism, but it is not enough powerful to deal
with the increasing necessity of reliability and availability
of many enterprise applications. Apart fromFilterfresh [3],
Jgroup [14, 13], and few others frameworks that offer a
group-enhanced extension of theJava distributed object
model, there is no attempt to support multi-point commu-
nications inJava. Both Filterfresh and Jgroup focus
their efforts in realizing multi-point communications trans-
parently from the client’s point of view, i.e., handling an
object group like a single entity carrying out its services
and returning a single value as answer. Transparency and
implementation simplicity are the main advantages of this
approach, since clients obtain a single value as if they were
invoking a method of a non-replicated object. However,
they present a lose of flexibility, since the object groups
cannot be used to implement, for example, computations
following the processor farmmodel. Therefore, we have
developed an extension to theJava communication model
which supports object groups and multi-point method invo-
cations with multiple return values.

The paper is organized as follows. Sections2 and 3
recall some background about the group communication
paradigm and theJava RMI. Sections4, and5 describe our

1

communication model and its implementation. Whereas,
section6 presents the framework at work on simple exam-
ples. Finally, conclusions and related work are considered
in the last two sections.

2. The Group Communication Paradigm

Object groups (groups for short) [11] provide a mecha-
nism to handle many objects as one. Groups are the key
abstraction of group communications. A group is a collec-
tion of objects that share a common goal. This goal consists
in offering improved quality services, i.e., both enhancing
reliability and availability through replication and enhanc-
ing performances through duty redistribution and coopera-
tive work. Usually, groups dynamically grow, i.e., objects
join and disjoin a group at their own discretion.

During the last few years, several academical and
commercial group communication frameworks are ap-
peared [21, 5, 16]. Although the services provided by
these systems present several differences, the key mecha-
nisms underlying their architectures are the same: a group
membership service integrated with a reliable multicast ser-
vice. The objective of a group membership service is to
keep members consistently informed about changes in the
current membership of a group through the installation of
views. The membership of a group may vary in conse-
quence of requests to join or to disjoin a group, or to ac-
cidental events such as failures and repairs of both the com-
puting system (member crashes and recoveries) and the
communication system (network partitioning and merging).
Installed views are composed by a collection of members
and represent the perception of the group’s membership that
is shared by its members. A reliable multicast service has
the task of enabling the members of a group to commu-
nicate by multicasting messages. Two members that install
the same pair of views in the same order deliver the same set
of messages between the installations of these views. This
delivery semantics, calledview synchrony, enables mem-
bers to reason about the state of other members using only
local information such as the current view composition and
the set of delivered messages. Two classes of GCS have
emerged: primary-partition [5] and partitionable [21]. A
primary-partition GCS attempts to maintain a single agreed
view of the current membership of a group. Members ex-
cluded from this view are not allowed to participate in the
distributed computation. In contrast, within a partitionable
GCS approach multiple agreed views may coexist in the
system, each of them representing one of the partitions in
which the network is subdivided. Primary-partition group
communication services are suitable for non-partitionable
systems, or for applications that need to maintain a unique
state across the system. Partitionable systems are useful for
applications that are able to take advantage of their knowl-

edge about partitioning in order to make progress in multi-
ple, concurrent partitions.

3. TheJava Distributed Object Model

Java RMI is a distributed object model that maintains
the semantics of theJava object model, making distributed
objects easy to implement and use. Remote objects are char-
acterized by the fact that their methods can be invoked from
otherJava virtual machines, potentially on different hosts.
Given a remote object class, the set of its methods that can
be remotely invoked is defined by one or more remote in-
terfaces. Clients of a remote object never interact with the
actual implementation class of this object, but only with a
local surrogate object that presents the same set of remote
interfaces.

TheJava RMI architecture is illustrated in Figure1 and
consists of three layers:stub & skeleton, remote reference,
andtransport layer. Each layer is independent, and can be
replaced without affecting the other layers.

3.1. Stub& Skeleton Layer.

The stub & skeleton layer represents the interface be-
tween applications and the rest of the RMI system: it has the
task of marshaling and unmarshaling the invocation param-
eters and the return values. Clients invoke methods of a re-
mote object through a stub, which plays the role of a proxy
for the remote object. The stub implements the same remote
interfaces of the remote object, and forwards each invoca-
tion request to the remote object through the remote refer-
ence layer. On the server side, a skeleton object dispatches
the requests coming from the remote reference layer to the
corresponding methods of the remote object. Both stubs
and skeletons are described byJava classes generated by
thermic preprocessor out of a remote service implementa-
tion. In Java 2, the classRemoteObject, — i.e., the class
extended by each remote object — carries out skeleton du-
ties, so skeletons are no more needed.

3.2. Remote Reference Layer.

Theremote reference layer is responsible for the seman-
tics of the invocation. Objects defined in this layer re-
alize the link with the implementation of the remote ser-
vices. The current version ofJava RMI includes only two
unicast (point-to-point) invocation mechanisms: one rela-
tive to servers always running on some machine (java.
rmi.server.UnicastRemoteObject), and one relative
to servers that are activated only when one of their methods
is invoked (java.rmi.activation.Activatable). To
provide remote services, the class of a server has to extend
either the classUnicastRemoteObject or Activatable.

2

java.rmi.server.UnicastRemoteObject
java.rmi.server.UnicastRemoteObject
java.rmi.activation.Activatable

client server

Stub & Skeleton
Layer

Remote Reference
Layer

Remote Reference
Layer

Stub & Skeleton
Layer

Transport Layer

Figure 1. TheJava RMI architecture.

3.3. Transport Layer.

The transport layer encapsulates all the low-level de-
tails such as connection (among JVMs) management and
invocation request transmission. Communications among
JVMs are done by TCP/IP connections by using a propri-
etary stream-based protocol calledJava Remote Method
Protocol (JRMP).

Each client, before invoking methods of a remote object,
must obtain a stub for it. For this reason, theJava RMI ar-
chitecture includes a repository facility calledregistry that
can be used to retrieve remote object stubs by name. Each
registry maintains a set of bindings

<name, remote object>;

new bindings can be added using thebind method, whereas
thelookup method is used to get the stub for a remote ob-
ject registered under a certain name. Since registries are
remote objects, theJava RMI architecture includes also a
bootstrap mechanism to obtain registry stubs.

4. Object Group Abstraction in Java

Point-to-point remote communications are an adequate
mechanism to model client-server applications. Notwith-
standing that, there are requirements which cannot or are
difficult to be achieved by using this communication model
— e.g., services’ reliability through server replication, or
divide and conqueror algorithms.

Our project consists of extending theJava system by
adding to the point-to-point RMI a one-to-many commu-
nication mechanism. In our communication model, service
requests will be forwarded to several servers providing such
services.

From the point of view of the end user, a multicast com-
munication can be realized either:

• by signing each multicast communication with its tar-
gets, such as inacast(), bcast(), andabcast() of
ISIS [5], or

• by hiding its multiple targets with a representative (the
group referent), and by using a unicast-like primitive
to establish a connection to such a referent.

A complete transparency may be achieved by providing an
intrinsic mechanism which chooses a value to return to the
client, e.g., by voting, on first arrived first served basis and
so on. Unfortunately, this approach jeopardizes its usabil-
ity hindering the programmer from using all the calculated
values in his algorithms.

We have preferred to follow a less transparent approach
in our group abstraction implementation. From the pro-
grammers’ point of view the mechanism used to invoke a
remote method call remains unchanged both for unicast and
multicast communications since, in case of a multicast com-
munication, he asks the service to a representative of the
group and not to each member, but he will receive back an
array containing all the values computed by the members of
the group instead of a single value only.

In the sequel, we show our framework and its realization.
A detailed overview can be read in [7].

4.1. Object Groups Management.

A group is a composite entity whose components are
objects providing the same services. Each object joins
the group by invoking specific operations. Information
about the group are kept and continuously updated by each
registry involved in the group management. Registries

3

stub

Client

grop
reference

RemoteObj RemoteObj

RemoteObj RemoteObj

. . .

. . .
group communication

RemoteGroup

Figure 2. Architecture of an Object Group.

use some synchronization primitives to notify each other
changes occurred to the group structure, e.g., when an ob-
ject joins or disjoins the group.

In the sequel of this section, we show how to deal with
object groups and multicast remote invocations inJava.

4.1.1. Members and Group Interfaces.

Every object belonging to a group provides the same ser-
vices of the other members, these services are described by
aJava interface. Member interfaces look as follow:�

public interface MemberextendsRemote{
typename1 method1() throws RemoteException , ...;

[...]
}� �

Analogously, services provided by the group are described
by an aggregative interface, which reassembles the inter-
faces implemented by each object belonging to that group.�

public interface MemberGroupextendsRemote{
typename1 [] method1() throws RemoteException , ...;

[...]
}� �

Group interfaces differ from member interfaces in the val-
ues returned by the specified services. Services provided by
a group, as shown in the above interface, return the collec-
tion of all values computed by the group members serving
the analogous services.

4.1.2. Members Definition& Creation.

Group members, like any remote server, have to extend the
RemoteObject class or one of its extensions. Extending
one of these classes provides objects with the mechanisms
to serve remote invocations. In particular, each object has
to extend the classMulticastRemoteObject to be able to
serve requests appointed to a group.�

public class Member1 extendsMulticastRemoteObject
implementsMember{

[...]
}� �

Group members are created, as any remote server, by using
the primitivenew.

4.1.3. Group Creation and Membership.

Groups have to be created and registered to thermireg-
istry as any remote server. They use a special instance of
the RMI registry, calledmulticast RMI registry. This reg-
istry deals with group management, e.g., creation, joining
and so on. Group creation takes two steps:

❶ the remote object asks (a call tocreateNewGroup) the
multicast RMI registry for the creation of a new group,
then

❷ the new group is registered in the multicast RMI reg-
istry as a group composed only of the requiring object.

The multicast RMI registry stores for the just created group
the association�GroupName, stub�, wherestub represents
thegroup reference (see Fig.2).

After group creation, remote objects can ask to a registry
to join (or to disjoin) the group using the methodjoin (or
disjoin). The multicast registry notifies the changes to all
the other registries hosting a member of the group. After
the notification each registry updates its databases.�

Member m1, m2;
MulticastNaming.createNewGroup(GroupURL, m1);
MulticastNaming. join (GroupURL, m2);� �

4.1.4. Getting a Service.

As for the unicast RMI, clients to ask a group for services
do not directly interact with it but with a local represen-
tative. This representative masks the real connection to the
remote servers. Clients can get a representative of the group
through a call toMulticastNaming.lookup.

4

�
MemberGroup grref;
gr ref = (MemberGroup)MulticastNaming.lookup(URL);� �

From user’s point of view, thebind/lookup mechanism

works similarly to the standard approach. They differ only
for the meaning of theURL argument. In the classic ap-
proach, it directly links to the URL of the remote server,
whereas in our framework it links to the remote object
which has created the group. However, getting a service
from a group is transparently carried out as in the unicast
remote invocations.�

typename1 [] results = grref .method1();� �

Figure2 reassembles how the remote method invocation

takes place. The stub dispatches the calls using its reference
layer. The group reference (layer) forwards the request to
the members of the group, collects the results and returns
them to the client in form of an array as specified by the
group interface.

5. Multicast RMI & Groups: the Architecture.

One of our objectives has been the design of an archi-
tecture which supports object groups without affecting the
original architecture ofJava RMI. To do that, we have ex-
tended the structure described in section3 putting besides
the remote reference, the stub& skeleton, and the trans-
port layers, a new layer, — calledgroup layer. The group
layer deals with group abstractions and the multicast remote
method invocations.

A description of the reorganized architecture and an
overview of the classes involved in such a reorganization
is presented in the following sections.

5.1. Stub& Skeleton Layer.

The stub& skeleton layers has been modified introduc-
ing stubs representing remote groups. In our framework we
have two kinds of stubs:unicast andmulticast. The former
is the stub used for unicast remote invocations, e.g., they are
used to ask a single group member for services. Whereas,
the latter is the group representative. As in the unicast RMI,
thermic preprocessor is still in charge of generating stubs
and skeletons.

5.1.1. Multicastrmic.

To allow a uniform access, the generated stub will refer
to aRemoteRef object for both remote objects and object
groups. When the stub represents a group an instance of
MulticastRef is used instead. Hence, we have modified

thermic preprocessor to also generate stubs having arrays
as return values of group services. This extension has in-
volved thejava.rmi.rmic package, and theGenerator
class which is really in charge to generate stubs and skele-
tons.

The Generator class.

A Generator object generates the source code for the re-
mote server stub, by parsing the source code. Basically, for
each remote interfaceX the compiler looks for another in-
terface, calledX group in the current path. If found, we are
in the case of a group interface and the attributeisMulti-
cast is set. This attribute is the key mechanism leading the
generation of aunicaststub rather than amulticastone.

A multicast stub differs from a unicast stub in the return
values of its methods. In fact, it has to gather and to return
an array of values rather than a single value.�

if (! returnType . isType(TCVOID)) {
if (! isMulticast) p.p("Object $result = ");
else p.p("ArrayList $result = (ArrayList) ");
}� �

We have also adapted the generation of the hash key which
indexes remote method invocations in order to handle the
type mismatch between group and member interface. The
hash key changes with the method prototype. We have
changed the method prototype (because of the return value),
hence this change has been reflected in the hash key gener-
ation as well.

5.2. Remote Reference Layer.

The remote reference layer has been extended to deal
with the new remote invocation semantic, i.e., it forwards
each request for a group service to each member of the
group. This automatic forwarding mechanism has been re-
alized by changing the unicastRemoteRef reference gen-
erated by thermic with an instance of theMulticastRef
class. Each instance of this class effectively represents a
group, i.e., a reference to a list of servers belonging to such
a group.

5.2.1. The ClassMulticastRef.

MulticastRef implements the multicast client-side group
remote reference. The class stores the list of remote refer-
ences of the objects composing the group.
invoke is the main method of the class. Its behavior con-
sists of asking each member of the group for serving the
given method (code from line6 to line15).

5

java.rmi.rmic

�
public Object invoke(Remote obj , Method method,

Object [] params,long op) throws Exception{
3 List result = newArrayList ();

Iterator gref = ref . gref ();
while (gref .hasNext ()){

6 LiveRef sref = (LiveRef)gref . next ();
Connection c = sref .getChannel (). newConnection();
RemoteCall call =

9 newStreamRemoteCall(c, sref .getObjID (), op);
ObjectOutput out = call .getOutputStream ();
marshalCustomCallData(out);

12 Class [] types = method.getParameterTypes ();
for (int i = 0; i < types . length ; i++)

marshalValue(types [i], params[i], out);
15 call . executeCall ();

Class rtype = method.getReturnType();
if (rtype ==void . class) {

18 result .add(null);
continue;
}

21 ObjectInput in = call . getInputStream ();
Object returnValue = unmarshalValue(rtype , in);
sref .getChannel (). free (c ,true);

24 result .add(returnValue);
}
return result ;

27 }� �

Its return value is an object which contains the collection
of the results of each remote method invocation (code from
line 16 to line24).

As default behavior, aRemoteException1 is thrown if
at least one of the calls fails. A different fault-tolerant be-
havior is realized using aMulticastRefFaultTolerance
reference.MulticastRefFaultTolerance extendsMul-
ticastRef throwing aZombieGroupRemoteException,1

if all the calls fail.
To marshal and unmarshal data appointed to the commu-

nication channel, the serialization mechanism has been ex-
tended overriding methodswriteExternal andreadEx-
ternal. The methodwriteExternal serializes the object
group on the stream. At the beginning, it serializes the num-
ber of servers belonging to the group (the size of the group);
then all the remote references. The methodreadExternal
deserializes the object from the stream. It reads the number
of remote references belonging to the group then reads all
the remote references.

5.2.2. The ClassMulticastRemoteObject.

The classMulticastRemoteObject defines a composite
remote object whose references are valid only while the

1Of course, if the remote object fails raising an exception this one is
propagated to the client instead.

server process is alive. This class supports the multicast ac-
tive object references (invocations, parameters, and results)
using TCP streams. There are two kinds of behavior sup-
plied by theMulticastRemoteObject:

• parallel, which implements the semantic of a parallel
process execution (default).

• fault tolerant, which implements a fault tolerant be-
havior.

Operations carried out inparallel mode fail and throw an
exception when one or more members of the group fail.
Whereas operations carried out infault tolerant mode fail
only when no server in the group can return an answer.

The default behavior is set toparallel, when the mode is
not specified calling the constructor of the remote servers.
Objects that should be part of a group have to extend the
MulticastRemoteObject class. If the object does not ex-
tendMulticastRemoteObject and notwithstanding that,
it would be part of a group, it has to provide by itself the
correct semantics of the hashCode, and of methodequals.
It has also to override thetoString method inherited from
theObject class, so that it behaves appropriately for both
remote objects and group of remote objects.

exportObject is the main method of this class. It ex-
ports the remote object passed as argument.�

public static Remote exportObject(Remote obj ,int port)
throws RemoteException{

3 Object [] args =
newObject []{new Integer (port),new String(mode)};

return exportObject (obj ,"MulticastServerRef",
6 portParamTypes, args);
}

9 private static Remote exportObject(Remote obj,
String refType , Class [] params, Object [] args)

throws RemoteException{
12 String refClassName ="sun.rmi.server." + refType;

Class refClass = Class . forName(refClassName);
Constructor cons = refClass . getConstructor (params);

15 ServerRef serverRef = cons.newInstance(args);

if (obj instanceof MulticastRemoteObject)
18 ((MulticastRemoteObject)obj). ref = serverRef ;

return serverRef . exportObject (obj ,null) ;
21 }� �

To render it available to receive the incoming calls, it builds
and returns aRemoteStub using the methodexportOb-
ject of the classMulticastServerRef (line 20of the re-
ported code).

6

5.2.3. The ClassMulticastServerRef.

MulticastServerRef implements the server side part of
the remote reference layer for remote objects exported with
theMulticastRef reference type. This class has only the
attributemode which specifies the behavior realized by the
group:parallel or fault tolerant. The attributemode is set to
parallel if not otherwise specified. To allow remote access
to the object, the methodexportObject builds the remote
stub for the class starting from theMulticastRef class if
mode is set toparallel and from theMulticastRefFault-
Tolerance class ifmode is set tofault tolerant.

5.3. Group Layer.

The group layer represents the kernel of our extension.
Its main duty consists of providing all the needed tools for
handling with groups, i.e., the multicast RMI registry, with
a naming and a locating mechanism.

5.3.1. The ClassMulticastNaming.

The classMulticastNaming — analogously to theJava
classNaming— provides methods for storing and retrieving
references to object groups in/from the remote registry.

Binding a name to a remote object means associating a
name with it. Such a name will be used to look up the ob-
ject. A remote object can be associated with a name by us-
ing the methodsbind andrebind of the classMulticas-
tNaming. When the exported object is aUnicastRemo-
teObject, the name represents simply its service label.
When the exported object is aMulticastRemoteObject,
the name represents the group service label.

Once a remote object is registered with the RMI registry
on the local host, callers from a remote host can look up
the object by name (using the methodlookup), get its ref-
erence, and then invoke its methods (as seen in section4).
If the object represents a group, its methods will return an
array of values, containing the result of the method invo-
cation on each server. A registry can be shared by all the
servers running on the host or each server may create and
use its own registry. Methods of this class use services sup-
plied from the registry defined in the interfaceMulticas-
tRegistry and implemented by the classMulticastReg-
istryImpl. New methods have been added for dealing
with groups:createNewGroup, join anddisjoin. More-
over, the classMulticastNaming provides methods to ac-
cess a remote object registry using URL-formatted names
to specify in a compact format both the remote registry and
the name for a remote object.

5.3.2. The interfaceMulticastRegistry.

Our framework comes with a simple remote object registry
interface,MulticastRegistry, which provides methods
for storing and retrieving remote object and group refer-
ences. This interface contains both the methods defined by
UnicastRegistry and some other methods needed to deal
with groups.�
public interface MulticastRegistry extendsRemote{

public Remote lookup(String name)
throws NotBoundException, AccessException;

public void bind(String name, Remote obj)
throws AlreadyBoundException, AccessException;

public void unbind(String name)
throws NotBoundException, AccessException;

public void rebind (String name, Remote obj)
throws AccessException;

public String [] list () throws AccessException;
// multicast RMI registry part

public void update (String Name, Remote obj)
throws NotBoundException, MalformedURLException;

public void sync (String Name, Remote obj)
throws NotBoundException, AccessException;

public void disjoin (String name)
throws GroupNotBoundException, AccessException;

}� �

Typically a registry exists on every node running remote
servers. Every server belonging to a groupmust register
to a multicast registry. A multicast RMI registry is also uni-
cast compliant, in the sense that it deals with unicast remote
method invocations as well.

Every registry contains a database that maps group
names to the objects belonging to that group. Initially, the
database of a registry is empty. A server stores its services
in the registry prefixing (but it is not mandatory) their name
with the package name to avoid name collisions.

To create a multicast registry, the programmer
can invoke the method LocateMulticastReg-
istry.createRegistry. Instead to get a reference
to a remote object registry, the programmer can invoke the
methodLocateMulticastRegistry.getRegistry.

Methodslookup andbind are defined to carry out the
lookup, join, anddisjoin operations defined in the class
MulticastNaming.

When a server joins (or disjoins) a group all the registries
keeping entries for the group need to be informed of the
change. This is implicitly done by methodsupdate, and
sync.

5.3.3. The ClassLocateMulticastRegistry.

LocateMulticastRegistry is used to get a reference to
a registry on a particular host (methodgetRegistry), or

7

to create a registry that accepts calls on a specific port
(methodcreateRegistry). The registry is a simpleUni-
castRemoteObject: the difference between the standard
LocateRegistry is that this registry loads the classMul-
ticastRegistryImpl and not the classRegistryImpl.

6. Object Groups at Work.

Object groups and multicast communications help in
dealing with many situations, e.g., fault tolerant servers,
or data-parallel programming. In this section we will face
some simple examples showing how to use our approach to
develop applications and their features.

6.1. Fault Tolerant Servers.

A classical object group application consists of manag-
ing system & software fault tolerance through either object
replication [19, 8] or versioning [2]. In this kind of appli-
cation, groups are used to improve the reliability of the pro-
vided services. They mask the fact that the server is repli-
cated (or versioned) insuring the client against server fail-
ures. Many frameworks providing object groups support
(e.g., ISIS [5], and Totem [16]), focus their efforts in this
direction limiting groups potentiality.

As explained, our approach to group communication is a
little bit less transparent than the other approaches rendering
available all the computed values to the client. A similar
approach does not prevent the programmer from realizing a
group of replicas or versions improving servers reliability.

Both approaching software and system fault tolerance is
quite simple. They differ only on the algorithms the group
members implement. Software fault tolerance has to pre-
vent from logical (both designing and programming) errors
whereas system fault tolerance has to prevent system errors,
e.g., host crashes. Hence, the latter will replicate the server,
whereas the former will use two different versions of the
server. However, both serve the same group interface. By
example:�
public interface server extendsRemote{

typename1 methodname1() throws RemoteException;
}

public interface servergroup extendsRemote{
typename1 [] methodname1() throws RemoteException;

}� �

A different approach will be taken with the implementa-
tion of the group members. If they are replicas we will have
just a class implementing all the group members, whereas if
they are versions we will have a class for each group mem-
ber. By the way, this one is not the right place where to

face the implementation of versions and replicas. We have
more interest in showing how the client will deal with the
multiple answers returned by the group.

6.1.1. Versioning.

The replicated servers implement the same services, but
with different code in order to spare clients from logical er-
rors. Each version returns its computed value, the client will
receive them, then it decides that the most frequent value is
the correct one (through the methodvoting).�
public class Client {

public static servergroup grp;

private static typename1 voting(typename1 [] res){
Hashtable resCount =newHashtable ();
int mostCommon = 0;

for (int i =0; i<res. length ; i++){
Integer val ;
if ((val = resCount. get (res [i])) ==null)

resCount.put(res [i],new Integer (1));
else resCount.put(res [i],

new Integer (val . intValue () + 1));
if (resCount. get (res [mostCommon]).intValue()<

resCount. get (res [i]). intValue ()) mostCommon = i;
}
return res [mostCommon];
}

public static void main(String [] args){
try {

grp = (servergroup)MulticastNaming.lookup(URL);
typename1 [] r = grp.methodname1();
System.out . println ("I vote for: "+voting(r));
} catch (Exception e){

System.out . println ("Client: "+e.getMessage());
e. printStackTrace ();
}
}

}� �

6.1.2. Replication.

All group members implement the same services with the
same code. Replicas have the task to spare clients from
system failures, i.e., from the impossibility of getting the
service result. Our approach allows the group to specify
this kind of operating mode.�
public class Member1 extendsMulticastRemoteObject{

public Member1() { super(fault tolerant);}
}� �

8

All the computed values are supposed to be the same and it
is not important which result has to be considered the right
one. Hence, the client considers the first, i.e., the one in-
dexed by zero, returned value as correct.�
public static void main(String [] args){

try {
grp = (MemberGroup)MulticastNaming.lookup(URL);
typename1 [] r = grp.methodname1();
System.out . println ("The result is: "+r[0]);
} catch (Exception e){

System.out . println ("Client: "+e.getMessage());
e. printStackTrace ();
}
}� �

6.2. Distributed MergeSort.

To prove that our multicast remote method invocation
is not limited to handle services’ fault tolerance, we show
how to use it to sort a bulky array, parallelizing the classical
mergesort algorithm [22].

The sequential mergesort algorithm is based on a divide
and conqueror approach, the array to be sorted is split into
two slices and then again up to have slices composed of only
two elements at most. Then, slices are sorted and merged
backward into a single array again.

A simple parallelization of this algorithm consists of en-
trusting each slice to an object group. Each member of the
group work on an half array, slicing it again and demanding
to another group the job. When the slice can not be split
again the object sorts the array and returns it to the calling
object which gathers and merge the resulting slices.

Hence, the application is composed of many groups
(log2n groups, wheren is the dimension of the array) com-
posed of two members. Each member implements the in-
terfaceMSUInterface, whereas the groups is described by
MSUInterface group.�
public interface MSUInterfaceextendsRemote{

Integer[] MergeSort(Integer [] a)throws RemoteException;

public interface MSUInterfacegroupextendsRemote{
Integer[][] MergeSort(Integer[] a)throws RemoteException;� �

The classMergeSortUnit describes the objects belong-

ing to the group which realizes the mergesort algorithm.
The class constructor links the just created instance to the
group which will handle the next step of the algorithm.
MergeSort is a multicast method, i.e., defined in the group
interface and activated by a multicast remote method invo-
cation. It ignites a new step in the algorithm, slicing the
array and forwarding it. It also merges the slices.

�
public class MergeSortUnitextendsMulticastRemoteObject

implementsMSUInterface{
private boolean higher = false;
private MSUInterfacegroup wks;

public MergeSortUnit(String[] v){
if (v[0].equal(HIGHER)) higher =true;
try {

wks =
(MSUInterfacegroup)MulticastNaming.lookup(v[1]);

} catch(Exception e){
System.out . println ("Group not found!");
e. printStackTrace ();
}
}

private Integer[] merge(Integer a[], Integer b[]){...};
private Integer[] extract (Integer a[],int d1, int d2) {...};

public Integer[] MergeSort(Integer[] a)
throws RemoteException{

if (a. length> 2) {
int dimSlice = a. length /2;
if (! higher) dimSlice += a. length%2;
Integer[] slice =new Integer (dimSlice);
if (higher) slice = extract (a , 0, dimSlice);
else slice = extract (a , a. length /2+1, a. length);
Integer[][] res = wks.MergeSort(slice);
a = merge(res[0], res[1]);
}
if ((a. length == 2) & (a[0]> a[1])) {

int tmp = a[0];
a[0] = a[1];
a[1] = tmp;
}
return a;
}
}� �

Each group member plays both the client and the server
role. It is a server since it provides the serviceMergeSort
to other groups and is a client because to carry out such
a service needs the same service from another group. In
themain, the object joins the corresponding group. Groups
are created by the first group which receives the array to be
sorted.�
public static void main(String [] args){

System.setSecurityManager(newRMISecurityManager());
String server = args [0];
try {

MergeSortUnit MSUnit =newMergeSortUnit(args);
java .rmi.MulticastNaming. join (args [1], MSUnit);
} catch (Exception e){ ... }
}� �

9

msec speed up msec speed up

Java RMI 160 1 Filterfresh2 210 0.76
JP/KaRMI 132 1.21 Jgroup 166 0.96
Multi-RMI 153 1.05

2 Data have been extrapolated from results reported in [3].

Table 1. Performances evaluation.

6.3. Performance Evaluation.

At the moment, we have carried out only some simple
tests to estimate the overall performance of our system. Our
tests consist of building a group with a fixed number of
members (in Table1 we report only the case of two mem-
bers) offering a null service, i.e., implementing a method
which does nothing. Then we have estimated how long
that service takes to be served. BeyondJgroup and Fil-
terfresh — that support object groups (see section7) —,
we have also involved the standardJava unicast remote
method invocation andJavaParty/KaRMI [18, 17], which
implements an efficient RMI mechanism forJava, in our
tests. When the tested framework did not support the object
group abstraction we have modified the test considering a
client which sequentially asks two or more servers for the
null service.

Table 1 summarizes our measurements. The speed up
ratio is related to standardJava RMI. The slowing down
of Jgroup, andFilterfresh is due to several reasons: they
have a decision phase before returning the answer, more la-
tency in request propagation to each member, they realize
reliable communications, and so on. From this simple test
emerges that the choice of demanding both the selection and
the computation of the service result to the client could be
the choices improving the performance of dealing with ob-
ject groups.

7. Related Work

In the last few years, the problem of integrating the group
communication paradigm with distributed object technolo-
gies such asJava RMI [20] has been the subject of in-
tense investigation. ManyJava-based frameworks sup-
porting object groups have been developed.FilterFresh [3],
iBus [12], andJgroup [14, 13] are significant results due
to those investigations.

iBus [12] is a commercial product written inJava and
aimed at supporting intranet applications such as content
delivery systems, groupware and fault-tolerant client/server
systems. Its architecture does not integrate the group com-
munication paradigm with the standardJava RMI archi-
tecture; instead, it is based on the concept of multicast chan-
nels mapped on IP multicast groups. Clients can subscribe

to multicast channels and can push and pull messages over
the subscribed channel.

Filterfresh [3] andJgroup [14, 13] share the same goal,
i.e. the integration of the group communication paradigm
with the Java distributed object model. Due to the con-
straints inherent toJava RMI, the approaches they follow
are similar: both offer a reliable invocation mechanism for
remote object groups composed by a collection of remote
objects that cooperate through a GCS, and a distributed im-
plementation of the RMI registry.

Due to the fact that their main goal consists of using
object groups to provide a reliable communication sys-
tem, bothFilterfresh, and Jgroup consider only object
groups composed of replicas and not of cooperating objects.
Hence, they get more transparency from client’s point of
view, which handles the group as a single remote object,
losing on flexibility, the client does not get all the values
elaborated from each group member, hindering, for exam-
ple, the processor farm parallelism.

Jgroup has also been integrated with theJini technolo-
gies [1] with the same goals getting similar achievements
and limitations [15].

8. Conclusion and Future Works

At the moment, we have a working tool which provides
a mechanism forJava to support object groups, groups
communications, and task farm parallelism. Our package
can be downloaded fromhttp://www.disi.unige.it/
person/CazzolaW/sw/multi-rmi.tar.gz. The tool is
simple and completely based on features available sinceJa-
va version 1.2. As future works we are interested in moving
our package to supportJava proxies available since ver-
sion 1.3 and nonblocking communication primitive avail-
able since version 1.4. Proxies help in rendering more clean
the implementation freeing programmers from using a non
standardrmic tool to compile stubs and skeletons (avoid-
ing also problems withJava class dynamic loading and
security checking). Moreover, by using nonblocking com-
munications improve performances because we can broad-
cast the invocation to every group member at the same time.
We will also improve the transparency of the approach in
case of object groups used to provide high available and
reliable services (i.e., services based on object replication)
like Jgroup andFilterfresh. We are also integrating this
multicast remote method invocation with our reflective mid-
dlewaremChaRM [6].

References

[1] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. The Jini Technology

10

http://www.disi.unige.it/person/CazzolaW/sw/multi-rmi.tar.gz
http://www.disi.unige.it/person/CazzolaW/sw/multi-rmi.tar.gz

Series ... from the Source. Addison-Wesley, Reading, Mas-
sachusetts, 1999.

[2] A. Avi žienis. The N-Version Approach To Fault Tolerant
Software.IEEE Trans. Softw. Eng., 11(12):1491–1501, Dec.
1985.

[3] A. Baratloo, P. E. Chung, Y. Huang, S. Rangarajan, and
S. Yajnik. Filterfresh: Transparent Hot Replication ofJa-
va Server Objects. InProceedings of the 4th USENIX
Conference on Object-Oriented Technologies and Systems
(COOTS’98), Santa Fe, New Mexico, Apr. 1998.

[4] K. P. Birman. The Process Group Approach to Reliable Dis-
tributed Computing. Commun. ACM, 36(12):36–53, Dec.
1993.

[5] K. P. Birman and R. Van Renesse.Reliable Distributed
Computing with theISIS Toolkit. IEEE Computer Society
Press, 1994.

[6] W. Cazzola. mChaRM: Reflective Middleware with a
Global View of Communications.IEEE Distributed System
On-Line, 3(2), Feb. 2002.http://dsonline.computer.
org/middleware/articles/dsonline-mcharm.html.

[7] W. Cazzola, M. Ancona, F. Canepa, M. Mancini, and V. Sic-
cardi. Shifting UpJava RMI from P2P to Multi-Point.
Technical Report DISI-TR-01-13, DISI, Università degli
Studi di Genova, Dec. 2001. Available athttp://www.
disi.unige.it/person/CazzolaW/references.html.

[8] M. Chér̀eque, D. Powell, P. Reynier, J.-L. Richier, and
J. Voiron. Active Replication in Delta-4. InProceeding
of the 22nd IEEE International Symposium on Fault Tol-
erant Computing (FTCS-22), pages 28–37, Boston, Mas-
sachusetts, USA, July 1992. Computer Society Press.

[9] R. Guerraoui, P. Felber, B. Garbinato, and K. Mazouni. Sys-
tem Support for Objects Groups. InProceedings of the
13th ACM Conference on Object Oriented Programming
Systems, Languages and Applications (OOPSLA’98), vol-
ume 33(10) ofSigplan Notice, Vancouver, British Columbia,
Canada, Oct. 1998.

[10] A. J. G. Hey. Experiments in MIMD Parallelism. In
E. Odijk, M. Rem, and J.-C. Syre, editors,Proceedings of
Parallel Architectures and Languages Europe (PARLE’89),
LNCS 366, pages 28–42, Eindhoven, The Netherlands, June
1989. Springer-Verlag.

[11] L. Liang, S. T. Chanson, and G. W. Neufeld. Process Groups
and Group Communications: Classifications and Require-
ments.IEEE Computer, 23(2):56–66, Feb. 1990.

[12] S. Maffeis. iBus - TheJava Intranet Software Bus. Tech-
nical report, Olsen and Associates, Apr. 1997.

[13] A. Montresor. A Reliable Registry for theJgroup Dis-
tributed Object Model. InProceedings of the Third Euro-
pean Research Seminar on Advances in Distributed Systems
(ERSADS ’99), Madeira, Portugal, Apr. 1999.

[14] A. Montresor. TheJgroup Reliable Distributed Object
Model. InProceedings of the 2nd IFIP WG 6.1 Int’l Working
Conference on Distributed Applications and Interoperable
Systems, Helsinki, Finland, June 1999.

[15] A. Montresor, R. Davoli, andÖ. Babaŏglu. Enhancing
Jini with Group Communication. InProcedings of the
ICDCS Workshop on Applied Reliable Group Communica-
tion (WARGC 2001), Phoenix, Arizona, USA, Apr. 2001.

[16] L. E. Moser, M. P. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos.Totem: A Fault-
Tolerant Multicast Group Communication System.Com-
mun. ACM, 39(4):54–63, Apr. 1996.

[17] C. Nester, M. Philippsen, and B. Haumacher. A More Ef-
ficient RMI for Java. InProceedings of ACM 1999 Java
Grande Conference, pages 152–157, San Francisco, Cali-
fornia, June 1999.

[18] M. Philippsen and M. Zenger.JavaParty - Transparent
Remote Objects inJava. Concurrency: Practice and Ex-
perience, 9(11):1225–1242, 1997.

[19] N. A. Speirs and P. A. Barrett. Using Passive Replicates in
Delta-4 to Provide Dependable Computing. InProceeding
of the 19th IEEE International Symposium on Fault Tolerant
Computing (FTCS-19), pages 184–190, Chicago, NJ, USA,
June 1989. Computer Society Press.

[20] SUN Microsystems. JavaTM Remote Method Invocation
- Distributed Computing forJava. White paper, SUN Mi-
crosystems, 1998. Internet Publication -http://www.sun.

com.

[21] R. Van Renesse, K. P. Birman, and S. Maffeis.Horus: A
Flexible Group Communication System.Commun. ACM,
39(4):76–83, Apr. 1996.

[22] N. Wirth. Algorithms + Data Structures = Programs.
Prentice-Hall, Englewood Cliff, 1st edition, 1976.

11

http://dsonline.computer.org/middleware/articles/dsonline-mcharm.html
http://dsonline.computer.org/middleware/articles/dsonline-mcharm.html
http://www.disi.unige.it/person/CazzolaW/references.html
http://www.disi.unige.it/person/CazzolaW/references.html
http://www.sun.com
http://www.sun.com

	. Introduction
	. The Group Communication Paradigm
	. The Java Distributed Object Model
	. Stub & Skeleton Layer.
	. Remote Reference Layer.
	. Transport Layer.

	. Object Group Abstraction in Java
	. Object Groups Management.
	. Members and Group Interfaces.
	. Members Definition & Creation.
	. Group Creation and Membership.
	. Getting a Service.

	. Multicast RMI & Groups: the Architecture.
	. Stub & Skeleton Layer.
	. Multicast rmic.

	. Remote Reference Layer.
	. The Class MulticastRef.
	. The Class MulticastRemoteObject.
	. The Class MulticastServerRef.

	. Group Layer.
	. The Class MulticastNaming.
	. The interface MulticastRegistry.
	. The Class LocateMulticastRegistry.

	. Object Groups at Work.
	. Fault Tolerant Servers.
	. Versioning.
	. Replication.

	. Distributed MergeSort.
	. Performance Evaluation.

	. Related Work
	. Conclusion and Future Works

