
The Role of Design Information
in Software Evolution

Walter Cazzola1, Sonia Pini2, and Massimo Ancona2

1 Department of Informatics and Communication,
Universit̀a degli Studi di Milano, Italy

cazzola@dico.unimi.it

2 Department of Informatics and Computer Science
Universit̀a degli Studi di Genova, Italy
{pini|ancona}@disi.unige.it

Abstract

Software modeling has received a lot a of attention in the last decade and now is an important support for the
design process.
Actually, the design process is very important to the usability and understandability of the system, for example
functional requirements present acomplete description of how the system will function from the user’s perspec-
tive, while non-functional requirements dictate properties and impose constraints on the project or system.
The design models and implementation code must be strictly connected, i.e. we must have correlation and con-
sistency between the two views, and this correlation must exist during all the software cycle. Often, the early
stages of development, the specifications and the design of the system, are ignored once the code has been devel-
oped. This practice cause a lot of problems, in particular when the system must evolve. Nowadays, to maintain a
software is a difficult task, since there is a high coupling degree between the software itself and its environment.
Often, changes in the environment cause changes in the software, in other words, the system must evolve itself to
follow the evolution of its environment.
Typically, a design is created initially, but as the code gets written and modified, the design is not updated to
reflect such changes.
This paper describes and discusses how the design information can be used to drive the software evolution and
consequently to maintain consistence among design and code.

1 Introduction

In the last few years, methodologies to automate part of the or the whole software life cycle has been widely stud-
ied in the software system development. These methodologies can be used to create and/or maintain software, i.e.
they are applicable to all the phases of the software life cycle.
Evolution and maintenance are phenomena more and more present in the software development area. Automatic
techniques to support these phenomena are fundamental to improve the managing of unanticipated software evo-
lution and the software efficiency.
The design process is very important to the usability and understandability of the system, for example functional
requirements present acomplete description of how the system will function from the user’s perspective, while
non-functional requirements dictate properties and impose constraints on the project or system.
The design models and implementation code must be strictly connected, i.e. we must preserve the correlation be-
tween the two views, and this correlation must exist for all the software life cycle. All system views must describe
the same situation, but often, during the evolution a discrepancy between the two views can occur.
The software life cycle includes requirements analysis and specification, design, construction, testing, and main-
tenance (also called evolution). But often, the initial stages of development (the system specifications and the
design) are ignored once the code has been developed. This practice causes several problems when the system
must evolve, because the evolution of only one view of the system causes agap between them, that could create
confusion, misunderstanding and mistakes. For example, a kind of evolution could require to add new functionality
not available in the earlier version of the system. When the change is not applied also to the design view, it is hard
for the manager, programmer and customer to have the opportunity to plan future directions, goals, schedule and
the necessary budget, since the design view could not provide an immediate and understandable global view of the
system consistent with the code. Moreover, it also hinders the integration of new functionality.
When there is a gap between the views it is difficult or impossible to know all the necessary changes to apply,
therefore the evolution cannot be plannedon-the-large. It is necessary to have aglobal view of the system to apply
all the evolutionary steps.
In our point of view, the global view may be well represented by the design information, because it is usually

1



Narrow St.: Road Upper St.: Road

Left St.: Road Church St.: Road Right St.: Road

Main St.: RoadLower St.: Road

TL2: Traffic Light

TL4: Traffic Light

TL1: Traffic Light

TL3: Traffic Light

has has 

has 

has 

asssyncid

link−id

link−id

link−id

link−idlink−id

link−id

link−id link−id
link−id

asssyncid

(a) Standard layout

TL4: Traffic LightTL3: Traffic Light

Narrow St.: Road Upper St.: Road

Left St.: Road Right St.: Road

Main St.: RoadLower St.: Road

has 

link−id

link−id

link−idlink−id

link−id

asssyncid

link−id

link−id

has 

(b) Modified layout

Figure 1: Object diagrams: a) object diagram for UTCS before the evolution b) modified object diagram after the
evolution.

graphic, and more intuitive and understandable than the code.

The paper describes and discusses how the design information can be used to drive the software evolution and
consequently to preserve the consistence among design and code views.
There are several approaches that can be used to achieve consistent software evolution, such as to develop a
comprehensive language that covers all the dimensions of software, or to develop a mechanism that integrates tools
for different dimensions. Our approach is different, we propose to develop a middleware that uses a representation
of software design strictly connected with the code of the system in question, and than that evolves together these
two views.

2 System Evolution through Design Information

With the help of an example, we describe how the design information, in our caseUML [1] specifications, can be
used to evolve a software system.
The Urban Traffic Control System (UCTS) is a typical example of system subject to unpredictable evolution,
since the requirements can dynamically change and the system should adapt itself, as soon as possible, to such
changes. Examples of unexpected and hard to plan problems may be: road maintenance, traffic lights disruptions,
car crashes, traffic jam and so on.
When designingurban traffic control systems (UCTS), the software engineer must model both mobile entities
(e.g., cars, pedestrians, vehicular flow, and so on) and fixed entities (e.g., roads, railways, level crossing, traffic
lights and so on).

The UTCS for a simple city, can be described by the object diagram showed in Fig. 1a, that defines the inter-
connections among roads and crossroads and a statechart that express the dependencies among traffic lights.
These diagrams well describe the system structure and behavior and its evolution should pass through these data
to be well planned and integrated with the existing code. Therefore the information derived by all these diagram
must go together with the system code as meta-data.
We suppose that the system evolves because of a car accident that temporarily blocks the traffic flow inChurch
Street. To face a similar event forces several small changes in the whole city structure and, consequently, to the
traffic flow. Several streets must be followed in a different direction to allow cars of reaching every place in the
city. Traffic lights governing the traffic in and out of the blocked street must be turned off.
All the changes required must be applied both in design and implementation view. The Fig. 1b show how the object
model changes after this event. Using the two object diagrams, before and after the evolution, and the meta-data
inside the code it is possible to propagate the evolution to the code.

2



3 Defining Meta-Data

To insert design information into the code of the system as meta-data, it is necessary to analyze what is a meta-data
and how it can be used.

Meta-data literallydata about data, or alsoinformation about information is a term used in several communities
in different ways.
We can say that meta-data are structured information that describes, explains, locates or otherwise makes it easier
to retrieve, use, or manage an information resource.
There are three main type of meta-data:

• Descriptive meta-data describes a resource for purposes such as discovery and identification, e.g., documen-
tation.

• Structural meta-data indicates how compound objects are put together, e.g.,. they are used to describe the
structure, layout and contents of an artifact.

• Administrative meta-data provides information to help manage an artifact, e.g., version control, location
information, acquisition information.

An important reason to create descriptive meta-data is to facilitate the discovery of relevant information by de-
scribing an artifact with meta-data simplify its understandability by a program, promoting the interoperability. For
our scope, we need to identify an artifact and to link up it with its design information. These meta-data could be
automatically derived (extracted) from the design models of the system, and then automatically inserted into the
code in the right places. To interleave the design information with the related code, is the better way of rendering
the code well documented and of granting the consistency and a prompt update of the design and implementa-
tion views. There are two ways to obtain a high coupling between design information and system code, the first
consists of deriving the design information from the system code, e.g. by using tools for reverse engineering it is
possible to obtain theUML diagrams from code, the second consists of deriving the skeleton of the program from
the design information, e.g. tools as Rational Rose, and Poseidon permits of generating the code directly from the
UML diagrams.
An implementing mechanism to link up design information and system code could be the meta-data facility present
in a lot of programming languages. In general, meta-data describe the implemented code, by storing information
regarding classes, methods, and types.
Several modern programming languages provide the programmers with a facility for annotating the code with
meta-data. In the case of theJava programming language, for example, this facility allows developers to define
customannotation types and toannotate fields, methods, classes, and other program elements withannotations
corresponding to these types. Development and deployment tools can read these annotations and process them
producing additionalJava programming language source files,XML document, or other artifacts to be used in
conjunction with the program containing the annotations.
Our idea consists of using theJava meta-data facility to link up the design information to program elements. In
particular, we think to use as design information theUML diagrams.

4 UML as Meta-Data

TheUML is de facto the standard (graphical) language used during the design process, therefore our project con-
sider its diagrams as a good representation of the system design information.
Our scope is to simplify the evolution/maintenance mechanism. That is, to render the changes required by the evo-
lution immediately available both to the design models and to the implementation, all that we will have as direct
consequence the maintenance of the consistency among the design and the code.
In our view, theUML diagrams and the code are seen as different views (design view and implementation view) on
a software system, so that consistency between the views is preserved by modeling a coherent refactoring of these
views. To realize our project, in particular we need to identify which diagrams are interested by the evolution and
also which pieces of software these diagrams describe, in other words, we need a precise mapping between the
two views mentioned above. TheUML diagrams are, typically, available at design time, to maintain the mapping
between the design and implementation view and then the consistency among design models and implementation
model during the evolution phase, all this information must be available also at loading and run-time.
Our proposal consists of decorating the system code with the design information. In this way, we obtain a twofold

3



advantage: to render the design information available at run-time; and, to create a mapping between the design and
the implementation view. The decoration will be realized by usingJava annotations.
SinceUML is a graphical language it is difficult to deal automatically with its diagrams, therefore, we have to
convert them into a textual representation to use them as meta-data.
We adopt, as most of theUML tools, theXML Metadata Interchange (XMI [6]) as handling form for the design
information.XMI provides a translation ofUML diagrams in a text-based form more suitable for run-time manipu-
lation. TheXMI standard gives a guideline for translating eachUML diagram inXML. Each diagram is assimilated
to a graph whose nodes are the diagram’s components (e.g., classes, states, actions and so on), and arcs represents
the relation among the components. The graph is decorated withXML tag describing the properties of the corre-
spondingUML component.
An example of the translation betweenUML diagram andXML is showed in the following listing.

<UML:Object xmi.id = ’Im169f2c98m10436f02a32mm7cfb’
name = ’TL2’ visibility = ’public’ isSpecification = ’false’>

<UML:Instance.classifier>
<UML:Class xmi.idref = ’Im13db344bm1041dfafc5emm7ec5’/>

</UML:Instance.classifier>
<UML:Instance.linkEnd>

<UML:LinkEnd xmi.idref = ’Im169f2c98m10436f02a32mm7cdb’/>
</UML:Instance.linkEnd>

</UML:Object>
<UML:Object xmi.id = ’Im169f2c98m10436f02a32mm7cec’

name = ’Left St’ visibility = ’public’ isSpecification = ’false’>
<UML:Instance.classifier>

<UML:Class xmi.idref = ’Im13db344bm1041dfafc5emm7c0a’/>
</UML:Instance.classifier>
<UML:Instance.linkEnd>

<UML:LinkEnd xmi.idref = ’Im169f2c98m10436f02a32mm7cdc’/>
</UML:Instance.linkEnd>
<UML:Instance.ownedLink>

<UML:Link xmi.id=’Im169f2c98m10436f02a32mm7cdd’ name=’has’ isSpecification=’false’>
<UML:Link.connection>

<UML:LinkEnd xmi.id = ’Im169f2c98m10436f02a32mm7cdc’ isSpecification = ’false’>
<UML:LinkEnd.instance>

<UML:Object xmi.idref = ’Im169f2c98m10436f02a32mm7cec’/>
</UML:LinkEnd.instance>

</UML:LinkEnd>
<UML:LinkEnd xmi.id = ’Im169f2c98m10436f02a32mm7cdb’ isSpecification = ’false’>

<UML:LinkEnd.instance>
<UML:Object xmi.idref = ’Im169f2c98m10436f02a32mm7cfb’/>

</UML:LinkEnd.instance>
</UML:LinkEnd>

</UML:Link.connection>
</UML:Link>

</UML:Instance.ownedLink>
</UML:Object>

The above portion ofXMI code translates part of the object diagram showed in Fig. 1a. In particular, it describes
the object namedTL2 andLeft St and their inter-connection. The instances description of a class is grouped into
theXMI tagUML.Object. The two occurrences showed in the above snippet describe respectively the the object
TL2 andLeft St in Fig. 1a. The name of the instance is contained in the attributename, whereas the type of the
instance is contained in the sub-tagClass. Thexmi.idref refers to description of the corresponding class into
the class diagram. Thehas association is described through the tagsUML:Instance.linkEnd that specify which
instances are involved into the association and the tagUML:Instance.ownedLink that describes the nature of the
association.

5 How to Use Meta-Data for Evolution

To annotate the code with design information we have to extract from eachUML diagram itsXMI description that
represents the perfect reification of the design information at run-time.

The meta-data provided by a singleUML diagram are many and, above all, refer to different part of code, e.g.,
a class diagram describes every class in the system and their relations, and this information encode both the class
definitions and the definition of some of their attributes, that have to be annotated. Since the main elements of a
sequence diagram are objects and messages, from them it is possible to extract information regarding the instances
of a class, and the interactions among them, e.g., creation, invocation of methods, destruction and so on. All this
information is inserted into the body of methods as annotations.
The right positioning of the annotations (i.e., fromUML design information toJava meta-data) is possible by

4



Traffic Light

−color:String
−corner−id:String

−sem_id:String

+turn−off():void

+turn−on()
+tick():void

Road

−road_id:String

link−id

has

asssyncid

0..*

Figure 2: An UTCS class diagram fragment

@Retention(RetentionPolicy.RUNTIME)

public @interface MESSAGE{
String XMI_ID();
String XMI_name();
OBJECT Link-start();
OBJECT Link-end();

}

Figure 3: declaration of annotation type MESSAGE

mapping theUML model components to theOMG Interface Description Language (IDL) and achieved by apply-
ing the meta-object facility (MOF)-IDL mapping. The existence of thisIDL representation ofUML means that each
UML element, such as associations, classes, actions, operations and so on, has anIDL description. The last step to
complete the mapping consists of applying anIDL to Java mapping (e.g.,Java IDL).

To realize the insertion of theXMI code into the right code place, we useJava annotation facility. An annota-
tion is a tag that we insert into the source code. It does not alter the semantics of the code, but instead allows an
external application of recognizing and interpreting the tag for its purpose.

The following listing shows the annotation typeCLASS declaration, this kind of annotation will decorate the
classes of the system, and the values of the attributes of each annotation derives by the corresponding class diagram.

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.CLASS)
public @interface CLASS{

String XMI_ID();
String XMI_name();
ATTRIBUTE[] attributes(); // array of annotation type ATTRIBUTE
ASSOCIATION[] associations(); //array of annotation type ASSOCIATION
METHOD[] methods(); // array of annotation type METHOD

}

Note that the annotation type declaration is itself annotated. Such annotations are called meta-annotations. The
first (@Retention(RetentionPolicy.RUNTIME)) indicates that annotations with this type are to be retained by
the virtual machine so they can be reflectively read at run-time. The second (@Target(ElementType.CLASS))
indicates that this annotation type can be used to annotate only class (type) declarations.

The following annotation is derived from the class diagram showed in Fig. 2.

@CLASS(XMI_ID="Im13db344bm1041dfafc5emm7c0a",
XMI_name="Road",
attributes={@ATTRIBUTE(XMI_ID="Im13db344bm1041dfafc5emm7bf6",

XMI_name="road_id"),
@ATTRIBUTE(XMI_ID="Im13db344bm1041dfafc5emm7be4",

XMI_name="road_link")},
associations={@ASSOCIATION(XMI_ID="Im13db344bm1041dfafc5emm7bba",

XMI_name="has",
multiplicity="Im13db344bm1041dfafc5emm7bbe",
associationEnd="Im13db344bm1041dfafc5emm7ec5")},

...
)

public class Road{
private String road_id;
private String road_link;
private Traffic_Light[] hastrafficlights;

...
}

The declaration of the annotation typeMESSAGE showed Fig. 3 will be used to decorate the pieces of code,
statements and so on, which map the message exchanged among objects, the values of the attributes of each
annotation derives by the corresponding sequence and collaboration diagrams.

5



TheJava annotation mechanism is not completely adequate for our purposes, because it permits of annotating
only the declarations whereas theUML diagrams have a finer granularity. The sequence diagram have information
about blocks of statement, and then the linked annotations would to be inserted inside the bodies, the the present
mechanism ofJava does not allow this.
To overcome this problem, we are extending theJava annotation mechanism and therefore theJava language
to support custom annotations on arbitrary code blocks or statements. This newJava dialect, called@Java
extends the syntax of theJava language to allow a more general form of annotation. To carry out this job we are
benefitting of our experience on[a]C# [3].
Obviously, the mechanism to insert the annotations into the application code is completely transparent to the
developer because it is realized as a preprocessor that analyze the design information and annotates on-the-fly the
code by byte-code instrumentation.
In this way any kind of evolution could be developed at the design level (i.e. at the design view of the system),
simply modifying all the necessary diagrams and dynamically realized by retrieving the related annotations and
instrumenting the code according to the planned evolution.

6 Conclusions

This paper presented an approach to use the design information for the dynamic software evolution. This approach
is based on some key concepts. The first concept is to maintain a strict correlation between the design information
and the application code, in an automatic way. The second is to map all the evolutionary steps both in the design
view and in the application code, so that the previous requirement is always satisfied. Into our work, we have
used as design informationUML diagram, and as programming languageJava. The correlation between the two
views of the system is realized thanks to theXMI description extracted by theUML diagrams, and thanks to the
annotation facility ofJava programming language.

References

[1] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User Guide. Object
Technology Series. Addison-Wesley, Reading, Massachusetts, third edition, February 1999.

[2] Walter Cazzola, Antonio Cisternino, and Diego Colombo.[a]C#: C# with a Customizable Code Annotation
Mechanism. InProceedings of the 10th Annual ACM Symposium on Applied Computing (SAC’05), pages
1274–1278, Santa Fe, New Mexico, USA, on 13th-17th of March 2005. ACM Press.

[3] Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for Software Evolution: A Design Oriented Approach.
In Proceedings of the 10th Annual ACM Symposium on Applied Computing (SAC’05), pages 1356–1360, Santa
Fe, New Mexico, USA, on 13th-17th of March 2005. ACM Press.

[4] Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A.MasteringXMI: Java Programming withXMI,
XML, andUML. John Willy & Sons, Inc., April 2002.

[5] Bennet P. Lientz, E. Burton Swanson, and Gail E. Tompkins. Characteristics of Application Software Mainte-
nance.Communications of the ACM, 21(6):466–471, June 1978.

[6] OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and Metadata Specifi-
cations available athttp://www.omg.org, January 2002.

[7] Jim Pierce, Michael D. Smith, and Trevor Mudge. Instrumentation Tools. In Anthony Finkelstein, editor,Fast
Simulation of Computer Architectures, chapter 4. Kluwer Academic Publishers, Boston, MA, USA, 1995.

[8] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

6

http://www.omg.org

	1 Introduction
	2 System Evolution through Design Information
	3 Defining Meta-Data
	4 UML as Meta-Data
	5 How to Use Meta-Data for Evolution
	6 Conclusions

