
Evolving Pointcut Definition to Get Software Evolution

Walter Cazzola1, Sonia Pini2, and Massimo Ancona2

1 Department of Informatics and Communication,
Universit̀a degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Universit̀a degli Studi di Genova, Italy
{pini|ancona}@disi.unige.it

Abstract. In this paper, we have briefly analyzed the aspect-oriented approach
with respect to the software evolution topic. The aim of this analysis is to high-
light the aspect-oriented potentiality for software evolution and its limits. From
our analysis, we can state that actual pointcut definition mechanisms are not
enough expressive to pick out from design information where software evolu-
tion should be applied. We will also give some suggestions about how to improve
the pointcut definition mechanism.

Keywords: AOP, Software Evolution, Design Information, UML, Pointcut
Definition

1 Software Evolution: What is it?

Nowadays a topical issue in the software engineering research area consists of produc-
ing software systems able to adapt themselves to environment changes by adding new
and/or modifying existing functionality. This characteristic is calledsoftware evolution.

The termevolution may, generally, be interpreted and studied from several distinct
points of view. In general software evolution implies to reengineering the design and
the code of software systems. Software evolution and maintenance can be categorized
into [9]: corrective, adaptive, perfective, andpreventative. The criteria that govern this
taxonomy are well identified by the motivations that render necessary the evolution,
e.g., adaptive software evolution is necessary when new functionality are required.

Nonstopping applications with long life span are typical applications that have to
be able to dynamically adapt themselves to sudden and unexpected changes to their
environment. Therefore, the support for run-time adaptive software evolution is a key
aspect of these systems.

Design information provides all the necessary data for governing software evolution
and is often used for manually evolving systems that can be stopped. Object oriented
methodologies for software development, asUML [1], describe the system’s behavior,
architecture and components; all functions in the system are captured by a use-case
model and the dynamic behavior of each use-case is described by scenarios and inter-
action diagrams. Therefore, the automatic reengineering of the design information of



a non-stopping system should represent the perfect tool for dynamically adapting such
kind of of systems.

Unfortunately, design data are difficult to manage automatically but especially it
is difficult to automatically generate working code from the design and inject it in the
running system. In this case, the evolution can be carry out by defining some mecha-
nisms that face the occurred events, manipulate theUML diagrams and then inject such
a changes directly and automatically in the code. As discussed in [2, 3] the diagram
manipulation is feasible by working on theirXMI representation and by using a set of
reconfigurable rules for planning the adaptation but the code injection is still far from
being achieved.

Software evolution that involves a generic system is usually carried out stopping
the system and manually, or with the aid of specific tools, changing the system code
according with the required evolution. On the other hand, a similar approach is not
feasible when the system subjects to the evolution cannot be stopped, e.g., because
provides a critical service as a monitoring system.

Independently of the mechanism adopted for planning the evolution, the evolution
of a nonstopping system requires a mechanism that permits of concreting the evolution
on the running system. In particular this mechanism should be able of i) picking the
code interested by the evolution out of the whole system code, ii) carrying out the
patches required by the planned evolution on the located code.

Both computational reflection [8] and aspect-oriented programming [5] provide
mechanisms (introspection and intercession the former and aspect weaving the latter)
that allow of modifying the behavior and the structure of an application, also of a non-
stopping application. Reflective mechanisms mainly focus their efforts on dynamically
modifying the system on a per object-basis whereas the AOP mechanisms better address
functionality that crosscut the whole implementation of the application. Evolution is a
typical functionality that may crosscut the code of many objects in the system.

2 Why could AOP be useful for Software Evolution?

Aspect oriented programming (AOP) [5] is a designing and programming technique that
takes another step towards increasing the kinds of design concerns that can be cleanly
captured within source code. Its main goal consists of providing systematic means for
the identification, modularization, representation and composition of crosscutting con-
cerns such as security, mobility and real-time constraints. Moreover, the captured as-
pects (both functional and nonfunctional) are separated into well-defined modules that
can be successively composed in the original or in a new application.

Where the tools of OOP are inheritance, encapsulation, and polymorphism, the
components of AOP arejoin points, pointcut, andadvice. Join points represent well-
defined points in a program’s execution, such as method calls, field get and set methods.
Pointcut is a construct that picks out a set of join points based on defined criteria, such
as method names and so on. Pointcuts serve to define an advice. An advice picks out
additional code to be executed before, after, or around join points. Typical implemen-
tations of object-based AOP frameworks insert hooks at the join points. An advice is
executed when the execution reach the corresponding (i.e., picked out by a pointcut)



join point. AspectJ [7] is one of the most relevant frameworks supporting the AOP
methodology.

AOP can be classified instatic anddynamic AOP. The systems, asAspectJ, com-
pliant to the static approach permit of weaving aspects at compile or load-time. On the
other hand, the dynamic AOP approach allows of dynamically plugging and unplugging
aspects at run-time widening the applicability spectrum of the AOP methodology. The
dynamic AOP approach requires a support middleware at run-time, calledexecution
monitor; the system raises a callback to that middleware to notifies that a hooks has
been encountered. The middleware takes also care of executing the advice.

Many frameworks support or may be used for implementing dynamic AOP, e.g.,
JAC [13], DJ [12], Prose [14], Wool [15] andJMangler [6].

From AOP characteristics, it is fairly evident that AOP is on the way of providing
the necessary tools for instrumenting the code of a nonstopping system, especially when
advices can be run at run-time. Pointcut should be used to pick out a region of the
code involved by the evolution, whereas the advice should define the code evolution
at the corresponding pointcut. Weaving such an aspect on the running system should
either inject new code or manipulate the existing code, allowing the system dynamic
evolution.

Unfortunately, in the evolution case, pointcut definition is an hard job because the
portion of code interested by the adaptation can be scattered around in the code and
not confined in a well-defined area that can be taken back to a method call. As pointed
out by Tom Tourẃe et al. in [17], this problem is due to the poor expressiveness of the
pointcut definition languages provided by the actual AOP frameworks.

The developer has to identify and to specify in the correct way the pointcut. To
pick out the pointcuts, the developer can use, what we calllinguistic pattern matching.
Nowadays, the pointcut definition languages permit to locate where an advice should
be applied by describing the pointcut as a mix of references to linguistic constructs,
such as method call or access to variables, and of generic references to the position,
such as before or after; the result, for example, looks something likeafter the call
of method m. Therefore, it is difficult to define generic, reusable and comprehensible
pointcuts that are not tailored on a specific application. Moreover a similar approach is
not feasible when the pointcut should involve code that spans among several classes, as
in the case of a pointcut describing a collaboration among objects.

3 Towards a Pointcut Definition Driven by UML Diagrams

Several mechanisms for achieving software adaptability have been proposed [18, 11].
The approach that we believe the most promising consists of integrating a reflective
architecture as the one proposed in [3] with an AOP framework. The reflective mid-
dleware has to take care of deciding the extent of the evolution and which code is
affected by such an evolution. Whereas the AOP framework has to dynamically weav-
ing the planned evolution on the join points picked out by the reflective architecture.
Both frameworks should perform their duty manipulating the design information of the
system prone to be adapted.



It is relatively simple to plan the system evolution by manipulating itsUML dia-
grams and similarly it is quite simple to detect the extent of the code modification and
which objects are affected by them from the design information. On the other hand, to
use design information to pick out a set of pointcut is not so simple because what it
is concisely described by a diagram or a portion of a diagram might be implemented
by many instructions disseminated in several part of the code or, analogously, what it
is abstracted in several entities by the design diagrams can be implemented as a single
entity by the system code. Besides, as discussed in [17], computational patterns, easily
recognizable in a sequence or in a collaboration diagram, are not trappable by actual
pointcut definition languages.

ask(A)

ask(A)

do
 so

m
et

hi
ng

do som
ething

A B C

answer(A)
answer(A)

ask(A)

������������

������������

������
������

������
������

������������	�		�	
�

�
 ���
���
�

�



�

�


�


������
������
���

������������

The above reported portion of sequence diagram describes a quite frequent collabora-
tion among three entities,A, B andC; A asks toC to intercede withB on its behalf, then,
after the successful intercession,A will interact with B. This schema could be used to
describe a control access protocol with an external authenticator. Notwithstanding that,
it is quite simple to understand the computational pattern described by this sequence di-
agram is not so simple to pick out which code realize it, especially on a pattern matching
bases. In fact, the diagram just describe the order and which operation MUST be done,
but nothing is said about which code do that and about whatA is doing while it is wait-
ing an answer fromC. Therefore, the computational pattern expressed in the squared
portion of the reported sequence diagram cannot be picked out by the actual pointcut
definition languages. As stated in [17] something can be done refactoring the code in
order to localize and to encapsulate the code of each entity in a method, but still nothing
can be done to pick out the collaboration among three entities.

Problems related to pointcut definition have been raised by several researchers [17,
4], in all their works they propose to use a more expressive pointcut definition language
mainly based on logic deduction and pattern matching. Notwithstanding the powerful-
ness of their proposals, they cannot deal with the straightforwardness and the abstrac-
tion provided by aUML diagram. A pointcut defined in term ofUML diagrams picks
out portion of code otherwise not identifiable, as explained above. Sillito et al., in [16],
highlighted the importance of usinguse case diagrams in the pointcut definition, our
idea is quite similar but we do not want to define a novel pointcut definition language,
asAspectU, that needs a special interpreter or to be mapped on an existing AOP lan-



guage, asAspectJ. Rather we would like to extend an existing pointcut language and
act on the weaving mechanism to supportUML-based join points.

Our proposal consists of usingUML diagrams or portion ofUML diagrams to de-
scribe where the advice should be woven. In this way, pointcuts are not tailored on the
program to adapt but they are more general and represent patterns applicable to sev-
eral computational flows. Of course, we will use a textual representation instead of a
graphical one based on theXMI standard [10] to define our pointcuts. Moreover, we
will exploit meta-data code annotations as supported by.NET or Java (version 1.5) to
introduceXMI code, that will play the role of the hooks, in the code to be adapted. An-
notations have the benefit to be supported by standard programming environments and
to be skipped during the normal execution, i.e., in this case, when no aspect is woven
on that annotation; therefore they should not add extra penalties during the execution.

4 Conclusions and Future Work

In this position paper, we have analyzed aspect-oriented development techniques in re-
lation with the software evolution problem. In particular, we have focused our analysis
on the approach to software evolution that we believe the most promising: software
evolution driven by design information. From our examination results that with actual
mechanism for pointcut definition is hard to pick out the code described byUML dia-
grams that with a higher abstraction level. Similar issues related to pointcut definition
have also been raised by other researchers [17, 4]. Our proposal consists of marking
the code with the correspondingUML diagrams (hooks for the weaving mechanism)
and of using such diagrams in the definition of the pointcuts and therefore in helping
to pick out where evolution should take place. In the next, we will extent the pointcut
definition language of an existing AOP framework, asAspectJ, with the possibility
of usingUML diagrams as pointcut as well. Analogously, we will enable the weaving
mechanism to act in conjunction with join points specified by such a kind of pointcuts.

References

1. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, Reading, Massachusetts, third edition,
February 1999.

2. Walter Cazzola, James O. Coplien, Ahmed Ghoneim, and Gunter Saake. Framework Pat-
terns for the Evolution of Nonstoppable Software Systems. In Pavel Hruby and Kristian Elof
Søresen, editors,Proceedings of the 1st Nordic Conference on Pattern Languages of Pro-
grams (VikingPLoP’02), pages 35–54, Højstrupgård, Helsingør, Denmark, on 20th-22nd of
September 2002. Microsoft Business Solutions.

3. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Software Evolution through Dynamic
Adaptation of Its OO Design. In Hans-Dieter Ehrich, John-Jules Meyer, and Mark D. Ryan,
editors,Objects, Agents and Features: Structuring Mechanisms for Contemporary Software,
Lecture Notes in Computer Science, pages 69–84. Springer-Verlag, Heidelberg, Germany,
February 2004.

4. Kris Gybels and Johan Brichau. Arranging Language Features for More Robust Pattern-
Based Crosscuts. InProceedings of the 2nd Int’l Conf. on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 60–69, Boston, Massachusetts, April 2003.



5. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In11th European Con-
ference on Object Oriented Programming (ECOOP’97), Lecture Notes in Computer Science
1241, pages 220–242, Helsinki, Finland, June 1997. Springer-Verlag.

6. Günter Kniesel, Pascal Costanza, and Michael Austermann. JMangler - A Powerful Back-
End for Aspect-Oriented Programming. In Robert Filman, Tzilla Elrad, Siobhán Clarke,
and Mehmet Akşit, editors,Aspect-oriented Software Development, chapter 9. Prentice Hall,
2004.

7. Ramnivas Laddad.AspectJ in Action: Pratical Aspect-Oriented Programming. Manning
Pubblications Company, 2003.

8. Pattie Maes. Concepts and Experiments in Computational Reflection. In Norman K. Mey-
rowitz, editor,Proceedings of the 2nd Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), volume 22 ofSigplan Notices, pages 147–156,
Orlando, Florida, USA, October 1987. ACM.

9. Tom Mens, Jim Buckley, Matthias Zenger, and Awais Rashid. Towards a Taxonomy of
Software Evolution. InProceedings of the 2nd International Workshop on Unanticipated
Software Evolution (USE 2003), Warsaw, Poland, April 2003.

10. OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and
Metadata Specifications available athttp://www.omg.org, January 2002.

11. Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-Based Runtime
Software Evolution. InProceedings of the International Conference on Software Engineer-
ing (ICSE’98), pages 177–186, Kyoto, Japan, April 1998.

12. Doug Orleans and Karl Lieberherr. DJ: Dynamic Adaptive Programming in Java. In Akinori
Yonezawa and Satoshi Matsuoka, editors,Proceedings of the Third International Confer-
ence on Metalevel Architectures and Separation of Crosscutting Concerns (Reflection 2001),
LNCS 2192, pages 73–80, Kyoto, Japan, September 2001. Springer.

13. Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard Florin. JAC: A Flexible
Solution for Aspect-Oriented Programming in Java. In Akinori Yonezawa and Satoshi Mat-
suoka, editors,Proceedings of the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection 2001), LNCS 2192, pages 1–24, Kyoto,
Japan, September 2001. Springer.

14. Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just in Time Aspects: Efficient Dy-
namic Weaving for Java. InProceedings of the 2nd Int’l Conf. on Aspect-Oriented Software
Development (AOSD’03), pages 100–109, Boston, Massachusetts, April 2003.

15. Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori. A Selective, Just-in-Time Aspect
Weaver. InProceedings of the 2nd Int’l Conf. on Generative Programming and Component
Engineering (GPCE’03), LNCS 2830, pages 189–208, Erfurt, Germany, September 2003.
Springer.

16. Jonathan Sillito, Christopher Dutchyn, Andrew D. Eisenberg, and Kris De Volder. Use Case
Level Pointcuts. InProceedings of the 18th European Conference on Object-Oriented Pro-
gramming (ECOOP’04), Oslo, Norway, June 2004.

17. Tom Tourẃe, Andy Kellens, Wim Vanderperren, and Frederik Vannieuwenhuyse. Induc-
tively Generated Pointcuts to Support Refactoring to Aspects. InProceedings of Software
engineering Properties of Languages for Aspect Technologies (SPLAT’04), Lancaster, UK,
March 2004.

18. Emiliano Tramontana. Managing Evolution Using Cooperative Designs and a Reflective
Architecture. In Walter Cazzola, Robert J. Stroud, and Francesco Tisato, editors,Reflection
and Software Engineering, Lecture Notes in Computer Science 1826, pages 59–78. Springer-
Verlag, Heidelberg, Germany, June 2000.

http://www.omg.org

	1 Software Evolution: What is it?
	2 Why could AOP be useful for Software Evolution?
	3 Towards a Pointcut Definition Driven by UML Diagrams
	4 Conclusions and Future Work

