
On the Problems of the JPMs

Walter Cazzola1, Antonio Cicchetti2, and Alfonso Pierantonio2

1 Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano,

cazzola@dico.unimi.it
2 Dipartimento di Informatica

Università degli Studi di L’Aquila,
{cicchetti|alfonso}@di.univaq.it

1 Introduction

Increasingly, aspect-oriented programming (AOP) [1] has been considered to
pursue a better modularization of object-oriented programs, especially when
representing crosscutting concerns. However, current aspect-oriented frameworks
such as AspectJ [2], AspectWerkz [3], JMangler [4] and others, operate in a
way directly related to the code. They define some points in the computational
flow, named join points, loci of the crosscutting concerns and provide a pointcut
definition language that allows the definition of some predicates on those join
points to detect where and when a decoupled crosscutting concern has to be
woven again.

Unfortunately, these mechanisms are too tightly connected to the program
structure and syntax, in fact join points consider only simple cases, such as
method calls, and the pointcut languages are based on a linguistic pattern match-
ing, respectively. Therefore, when using it massively, a number of problems raise
due to the strict coupling between the pointcut definitions and the implementa-
tion:

– it could be hard to write pointcuts which pick out all and only desired join
points;

– it’s difficult to express modifications spread all around the code [5];
– when changes occur on the code, some pointcut definitions could be invali-

dated.

Consequently, instead of improving modularization, actual AOP approaches tend
to make systems difficult to scale, maintain and reuse [6] and prevent developers
from fully taking advantage of the AOP benefits which suggest to look for a
more expressive join point model (JPM).

2 AOP meets Model-Driven Development

Model-driven development (MDD) [7] techniques were devised to shift the focus
of software development from coding to modeling in order to abstract system



2

design from platform-specific issues. Thus, the models are the primary artifacts
and considered as first-class objects which allow the designer to better under-
stand complex problems and their solutions. The ultimate goal of such a vision
is to protect investments in business logic by generating platform-specific models
and code for different implementation environments in a (semi) automatic way.

A model is an abstract description of some reality, which aims to point out
interesting features for a certain domain; to make such a description they are
used well defined syntax and semantic, which usually are specified in terms of the
model itself, i.e. the meta-model. Leveraging the abstraction in JPMs is challeng-
ing [5, 6, 8], since current proposals suffer from being too syntax-oriented which
appears as a limitation to separate non functional concerns tangled with the
functional ones within aspects. Investigating on problems related to JPMs, you
can rapidly agree that the level of abstraction has to be improved to separate in
aspects non functional concerns tangled with the functional ones; thus, following
MDD paradigm, we think that it is necessary a JPM defined at meta-model and
model level. Pointcuts will become queries to select a particular sub-model of
the model itself; the specification level (meta-model or model) will depend on
the specificness of the definition: more it needs to be accurated, and more the
level of abstraction has to decrease. An advice will be the sub-model used to
substitute the one selected by a pointcut; this way join points will completely
disappear or, to say better, they will become implicit (i.e. a join point is every
possible starting point from which a sub-model can be changed with another).

A JPM at such a high level of abstraction has several advantages:

– definitions semantic-related, not syntax-related;
– scalability;
– reusability;
– maintainability.

First of all the programmer can represent pointcuts in a semantic way, i.e. she/he
is completely independent of the program syntax; moreover, the developer can
specify complex pointcuts which could require changes spread on the code. This
main property enables all the following; scalability, reusability and maintain-
ability directly derive from the breach of relations between base code and JPM.
In fact, when you write a query at a model level, you are really partitioning
the model in sets of semantically related elements. Thus, when you are going
to add elements for example, they automatically make part of a certain set; if
you change names of elements which aren’t involved in pointcuts definition, you
won’t need any adjustment.

However, there are some drawbacks:

– application to code;
– re-engineering of actual aspect-oriented code.

Defining aspects at such a high level requires new solutions to efficiently map
modeled pointcuts to target code: we could choose to transform directly the
model to a “plain” code, i.e. a base code where aspects totally disappear; we



3

could transform the portions that could be implemented in a AOP language and
refactor the base code for the remaining; we could build an engine being able
to weave aspects and code at runtime. They are all solutions we are actually
investigating on. Furthermore, we have to consider that all the code already
written with current AOP languages should be re-engineered, thus allowing on
one hand the maintenance and reuse, and on the other hand a “soft” introduction
of this new kind of JPMs.

3 Conclusions

Using AOP in non trivial projects, raises several problems related to the poorness
of JPMs, that in turn is due to the fact that they are defined at a too low level
of abstraction. Our opinion is that designing JPMs at a higher level could solve
several issues; as MDD paradigm suggest, this level should be the model. We are
actually investigating on a good way to query the model (i.e. the definition of
JPM) and, as said before, on how to apply modeled weavings at code levels.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. Springer 1241 (1997) 220–242

2. Laddad, R.: AspectJ in Action. Manning Publications Co., Grennwich, Conn.
(2003)

3. Vasseur, A.: Dynamic AOP and runtime weaving for Java—How does AspectWerkz
address it? In Filman, R., Haupt, M., Mehner, K., Mezini, M., eds.: DAW: Dynamic
Aspects Workshop. (2004) 135–145

4. Kniesel, G., Costanza, P., Austermann, M.: JMangler—A powerful back-end for
aspect-oriented programming. In Filman, R.E., Elrad, T., Clarke, S., Akşit, M.,
eds.: Aspect-Oriented Software Development. Addison-Wesley, Boston (2005) 311–
342

5. Cazzola, W., Pini, S., Ancona, M.: AOP for Software Evolution: A Design Oriented
Approach. In: Proceedings of the ACM Symposium on Applied Computing 2005,
ACM press (2005) 1346–1350

6. Tourwé, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution para-
dox. In Bergmans, L., Brichau, J., Tarr, P., Ernst, E., eds.: SPLAT: Software
engineering Properties of Languages for Aspect Technologies. (2003)

7. Selic, B.: The pragmatics of model-driven development. IEEE Software 20 (2003)
19–25

8. Tourwé, T., Kellens, A., Vanderperren, W., Vannieuwenhuyse, F.: Inductively gen-
erated pointcuts to support refactoring to aspects. In: Proceedings of Software en-
gineering Properties of Languages for Aspect Technologies (SPLAT’04), Lancaster,
UK (2004)


