
Seamless Nomadic System-Aware Servants

Walter Cazzola Dario Maggiorini

DICo - Department of Informatics and Communication
Universit̀a degli Studi di Milano

{cazzola,dario}@dico.unimi.it

Abstract

The growing diffusion of wireless technologies is lead-
ing to deployment of small-scale and location dependent
information services (LDISs). Those new services call
for provisioning schemes that are able to operate in
a distributed environment and do not require network
infrastructure. This paper describes an approach to a
service-oriented middleware which enables a mobile
device to be aware of the surrounding environment and
to transparently exploit every LDIS discovered in the
coverage area of the hosting wireless network. the paper
introduces seamless nomadic system-aware (SNA) servant.
SNA servants run on mobile devices, discover LDISs
and are not associated with any specific service. The
paper also describes the key features for the SNA ser-
vants implementation and for rendering them interoperable
and cross-platform on, at least,.NET andJVM frameworks.

Keywords: Reflection, Adaptive Middleware, Service
Provisioning, Service-Oriented Middleware.

1 Introduction

In the last few years there has been a considerable pen-
etration of wireless communication technology in everyday
life. This penetration has also increased the availability of
location-dependent information services (LDIS) [19], such
as local information access (e.g. traffic reports, and news),
nearest-neighbor queries (such as finding the nearest restau-
rant, gas station, medical facility, or ATM) and others.

New wireless environments and paradigms are contin-
uously evolving and novel LDISs are continuously being
deployed. City and tourist electronic guidebooks [7, 1] are
recent examples of deployed LDISs. Such a growth means
to deal with:

• services without standard interfaces - same or similar

LDISs being offered by different vendors through dif-
ferent APIs but with the same standard functional in-
terfaces;

• dynamically deployed services - LDIS made available
on a need basis or when the scenario dynamically
changes, this also calls for a dynamic roaming between
services as well as for dynamic service interchange-
ability; and

• non-classified services (i.e., novel services).

Wireless networks are more and more often composed of
stand-alone wireless nodes connected without any support
infrastructure. Such networks are not administered by a
central entity and client applications cannot assume any
knowledge about which services are provided, where they
are located and how long they will be available.

Therefore, it is necessary an infrastructure/middleware
that enables a mobile device: (i) to automatically discover
every LDIS server, (ii) to be aware of and to exploit the ser-
vices available in its range, and (iii) to transparently change
the LDIS server when it moves out from the current cover-
age area without compromising service fruition.

These issues have been faced by proposing a novel re-
flective and nomadic middleware especially designed for
supporting dynamic adaptation of services in according
with the LDISs in its coverage area. The main components
of such a middleware are theseamless nomadic system-
aware (SNA) servants. Their aim consists of discovering
LDISs, adapting to the detected services and providing a
transparent interface between the LDIS and the user.

The rest of the paper is structured as follows: section 2
presents the necessary background whereas sections 3, 4,
and 5 are devoted to giving an overview of the SNA ser-
vants, of their implementation and of the benefits and draw-
backs they offer. Finally, the proposed middleware has
been compared with some related works in section 6, fu-
ture works have been presented in section 7 and conclusions
have been drawn in section 8.

1



2 Background

2.1 Computational Reflection.

Computational reflection (orreflection for short) is de-
fined as the activity performed by an agent when doing
computations about itself [20]. This activity involves two
aspects:introspection and intercession. Bobrow et al. [4]
define these two terms as follows:

Introspection is the ability of a program to ob-
serve and therefore reason about its own state. In-
tercession is the ability for a program to modify
its own execution state, or alter its own interpre-
tation or meaning.

Reflection applies quite naturally to the object-oriented
paradigm [11]. Just as objects in the conventional object-
oriented paradigm are representations ofreal world entities,
objects can themselves be represented by other objects, usu-
ally referred to asmeta-objects. Computation done by meta-
objects (meta-computation) is for the purpose of observing
and modifying the objects they represent, calledreferents.

2.2 Distributed Middleware

CORBA. The Common Object Request Broker Archi-
tecture (CORBA) [22] is an open distributed object com-
puting middleware standardized by the Object Management
Group (OMG).CORBA automates many common network
programming tasks such as object registration, location,
and activation; request demultiplexing; framing and error-
handling; parameter marshalling and unmarshaling; and op-
eration dispatching.

CORBA provides mechanisms, such as thedynamic
invocation interface (DII) andstub invocation, for request-
ing services to a server without knowing the server identity
and location and the service interface. Basically, in the
CORBA architecture there is animplementation repository
which gathers both the interfaces of all registered servers
and their services and anobject request broker (ORB) that
looks at the implementation repository for a server offering
a service compliant to the client current request.

Microsoft .NET [13] (.NET for short) is a language-neutral
environment for executing programs that can easily and
securely interoperate. Rather than targeting a particular
HW/OS combination, programs will instead target “.NET”,
and will run wherever.NET run-time is deployed. The.NET
framework has two main parts:

• thecommon language run-time (CLR).

• a hierarchical set of class libraries

The CLR is described as theexecution engine of .NET. It
provides the environment within which programs run. The
most important features are: conversion fromintermediate
language (IL) to native code (just-in-time compiling),
memory management, loading and executing programs.

Java remote method invocation (RMI) [23] framework is
a lightweightJava ORB-like architecture, written to pro-
vide easy access to objects existing on remote virtual ma-
chines. Once a reference to a remote object has been ob-
tained, it can be treated as a local object.RMI performs
the marshalling, transportation and garbage collection of re-
mote objects transparent to the programmer, making it very
easy to write distributedJava programs.

RMI is not a general purposeORB with global applica-
bility. It is a Java-only technology and is as such not a
direct competitor toCORBA or .NET which are not lim-
ited to one language. Rather than having a special purpose
interface definition language such asIDL, interfaces to re-
mote objects are defined using ordinaryJava interfaces, a
benefit ofRMI beingJava-only.

3 Seamless Nomadic System-Aware Servants

Seamless nomadic system-aware (SNA) servants areac-
tive objects [8] running on mobile devices (e.g., PDAs,
smartphones and laptops). They are mainly concerned in
providing the user1 with the services discovered in the cov-
erage area.

SNA servants areseamless, nomadic andsystem-aware
active objects. They are developed for mobile environ-
ments, this fact renders themnomadic. SNA servants look
for the available services (any kind of service) during their
wandering, when a service is discovered it is provided to the
user. The servant can offer as many services as have been
detected. Therefore, SNA servants provide services with-
out being associated to any specific LDIS, that is, they are
seamless servants.

From an architectural point of view a SNA servant is a
sort of daemon running on the mobile device. During the
device wandering, the SNA servant:

❶ monitors its coverage area looking for LDIS servers
until a LDIS server is detected; then

❷ inspects the detected LDIS server for retrieving its ser-
vices;

❸ traces such services keeping a representative of them
in a service pool; finally

1Please note, that in this context with the termuser both human and
artificial actors (other SNA servants or client processes) are intended.

2



❹ the servant comes back to monitor its coverage area
whereas the gathered services can be exploited by the
user through their representative in the service pool.

Services gathered during the servant wandering are avail-
able on its behalf until they are reachable. A representative
of the service2 is managed by the servant. A representative
in the service pool is updated when another service with the
same description but closer or more accessible by the mo-
bile device is found. The representative is removed from
the service pool when the corresponding service becomes
unreachable from the current position of the mobile device.
Therefore the service pool always refers to the available best
choice for each service.

Service introspection (point❷ above) and service inter-
cession (the second part of point❹) well characterize the
system-awareness of the SNA servants. SNA servants do
not know the network infrastructure (i.e., how many servers
are in their coverage area and where they are), and do not
know the service nature a priori. As explained in sec-
tion 5.3, they probe both the network and service structure
by exploiting introspection and intercession. Introspection
and intercession are provided by the underlying infrastruc-
ture and intrinsic in the servant nature.

Services in the pool are classified by using ontologies,
our approach is similar to theservice classifier agent (SCA)
approach [29]. Service introspection is used to retrieve the
data necessary for service classification then subsumption is
used to automatically place services in taxonomies permit-
ting a dynamic classification. This taxonomy helps in rec-
ognizing the services and in choosing the better and avail-
able service on client request.

Note that, at the moment, the SNA servants consider as
a service only methods that are in the server’s public in-
terface and that can be remotely invoked, but this choice
should not be considered restrictive because most of the
platforms (e.g.,Java, .NET andCORBA) that provide ser-
vices are object-based and it is quite easy to write a method
that wraps a generic, i.e., not method-based, service.

4 SNA Servant Benefits& Drawbacks

Adoption of SNA servants will lead to many benefits for
service providers and implementors.

Clients’ architecture and logic will be independent of
type and implementation of the needed service. Requests
will be dynamically adapted to the required interface and
transparently forwarded to the right and more unloaded
server. Therefore, the SNA servants also provide service
roaming/routing and load balancing.

Moreover, services brokered by a SNA servant can dy-
namically change; the code needed to accommodate the

2That is, a sort of stub that is used to invoke the corresponding service.

change will be transparently downloaded at run-time from
a trusted source with no express acknowledgement by the
client (see section 5.3).

During operations, the connection status is stored in the
SNA servant, thus, it migrates together with the client from
a network to another and it is kept consistent with different
LDISs providing the same service.

Obviously, together with these benefits we also get some
drawbacks.

Many efforts need to be devoted to provide legacy
to existing services, like web servers or DBMS engines,
which are often needed but rarely offer an object-oriented
reflection-capable interface. The lack of an object-oriented
interface make legacy services difficult to be detected; port
scanning on each in-range host could be needed, making the
system too invasive and effecting network performances.
Supporting these services will require the servant to know
how to handle all possible services offered on well-known
ports; thus the code could become too large for a mobile
device like a PDA and the dynamic adaptation mentioned
before will not be exploitable (e.g., a SNA servant trying
to send mail is implicitly assuming to probe only on port
25 and to know the sendmail syntax). Furthermore, legacy
services will be able to support client-initiated connections
only, limiting even more SNA servants’ functionalities.

Due to the nature of wireless networks, where bandwidth
is a critical resource, as already mentioned, servers discov-
ery needs to be as less invasive as possible. Application-
level discovery is easy to implement and portable, but might
imply unacceptable bandwidth usage as well as long time-
outs to detect a server to be off-range. If the SNA servant
gets integrated with the network interface driver less traffic
will be generated since discovery will be possible using pas-
sive observation of MAC messages, but, on the other hand
implementation will become dependent of the kernel struc-
ture, hardware platform and transmission protocol.

Having connection status on the client will expose the
system to security issues regarding identification and non-
repudiation for both SNA servant and LDIS. Security is-
sues for ad-hoc networks have already been studied in lit-
erature (see [30, 14] and [28]), but application of exist-
ing security models to a SNA servants scenario is still on-
going work. Even solving authentication problems could
not prove enough to secure the framework; security issues
arise about sensible data located on the mobile device. The
framework will be required to support applications and to
avoid malicious code or the user itself to tamper with re-
stricted information.

5 SNA Servants Technical Issues

This section goes deeper describing some technical is-
sues that are arising during the prototype implementation of

3



the SNA servants regarding their integration with two of the
most popular object-based frameworks, that are.NET [13]
andJVM [2], and with the LDIS servers running on them.

5.1 Cross-Platform Interoperability

Designing the SNA servants infrastructure, we have
taken in consideration the heterogeneity of the existing
LDIS servers. Many services for mobile devices are al-
ready offered, but often they are not compatible with any
kind of clients or compliant with a common standard and,
above all, they are developed by exploiting several different
technologies, e.g.,CORBA [22], Java [2], web [5] and
COM/.NET [13]-based technologies.

A priori, this heterogeneity of technologies and stan-
dards hinders the nomadic aspect of the SNA servants. They
wander on the net and must be able to interact with any
kind of technology they encounter, both for discovering the
available LDIS servers (see section 5.2) and for getting the
services they offer (see section 5.3). Therefore, the SNA
servants should adopt a technology that grants them the pos-
sibility of interacting with most of these technologies and
executing on any system, i.e., that allow the SNA servants
to achievecross-platform interoperability.

Fortunately, most of the technologies adopted by the
servers already take in considerationinteroperability (Ja-
va and CORBA components interact through theJava
RMI over internet inter-orb protocolRMI-IIOP [24] and the
org.omg.* packages), or are included in novel and more
flexible standards (theCOM features are included in the
.NET framework). MoreoverJava and .NET frameworks
have a very similar architecture based on just-in-time com-
pilation and interpreted bytecodes that render them easily
integrable [17].

After these considerations, rendering the SNA servants
able to interact withJava- and.NET-based servers means
to enable them to interact with most of the existing servers.
Moreover, theJava and the.NET framework are simply
integrable as proved byJNBridgePRO [17] and an hybrid
Java/.NET architecture permits the SNA servants to run on
any operating system (i.e., Windows, Linux and MacOS).

The interoperability among.NET andJava and thence
with most of the LDIS server technologies is achieved by
implementing the SNA servants with an hybrid architecture,
similar to theJNBridgePro [17] architecture.

JNBridgePro is aJava-.NET interoperability tool that
enablesJava code to be called from.NET code, and.NET
code to also be called implicitly fromJava code. A system
using JNBridgePro consists of components on both the
Java side and the.NET side. .NET classes run on aCLR,
whereasJava classes run on aJVM, andJNBridgePro
transparently manages the communications between them.
To expose classes from one platform to classes on the other,

proxy classes are automatically created that offer access to
the underlying real class.

SNA servants do not need a fully bidirectionalJava-
.NET interoperability asJNBridgePro offers. They simply
must be implemented by usingJava or .NET technology
and be able to invoke remote services implemented by us-
ing the other technology. Therefore,.NET method invoca-
tions has been wrapped inJava methods which forward
(by using theSOAP [6] technology) such invocations to a
.NET proxy (which is a sub-component of the SNA servant
architecture) that really invokes them. A similar, but spec-
ular, approach has been adopted for.NET-based SNA ser-
vants. In this way,.NET components always interact with
remote.NET components and the same is valid also forJa-
va whereas interoperability is carried out inside the SNA
architecture and transparently to servers and users.

5.2 Localizing LDIS Servers

SNA servants should be independent, as most as it is
possible, of the architecture and the technology adopted by
the LDIS servers. Therefore, the SNA servants should be
able to interact with and have a fully distributed architecture
without making supposition about the service advertisement
mechanism adopted by the LDIS servers. Above all, SNA
servants should avoid to impose a support infrastructure to
the servers that want to cooperate with them. Surely an
architecture based on a brokering sub-system would have
simplified the SNA servants implementation, but would also
have compromised their potentiality by limiting the interac-
tion exclusively to servers compliant with such an infras-
tructure.

The problem of localizing a LDIS server can be divided
into two sub-problems: (i) localizing a host in the coverage
area of the SNA servant, and (ii) detecting which servers are
running on the localized hosts.

Localizing a host. Both structured (i.e., wireless network
with a support infrastructure) and ad hoc networks (i.e.,
without an infrastructure) provide mobile devices with a
mechanism for detecting their neighbors.

In structured wireless networks the neighborhood can be
explored through the access point. Each access point inter-
nally keeps a list of hosts3 in its zone of coverage. The
involved access points update their lists when a palmtop
moves from a zone of coverage to another. Therefore, the
SNA servants can poll the access point looking for the IP
address of the other computers in the same area.

In ad hoc networks, the neighborhood exploration takes
place exploiting a MAC-level protocol. The system inter-

3Unfortunately, how this information is stored depends on the access
point vendor, but we can suppose that there will be a standardization in the
future.

4



cepts the signals from the handshake protocol at MAC level
and monitors the protocol activities. In the Bluetooth sys-
tem [3], for example, it monitors the inquiring and paging
activities.

The SNA servants will adopt one of the above strategies
according to the underlying network technology.

Localizing a server. The SNA servants must provide the
user with services independently of the technology adopted
by the LDIS server. Therefore, the SNA servants must be
able to exploit the technology available on the hosts.Ja-
va, CORBA and.NET technologies provide a public repos-
itory, respectively thermiregistry, theORB and the UDDI
registry [26], which supply the LDIS servers available on a
certain host along with their public services and their signa-
tures. The SNA servants will ask the repositories4 for the
registered servers when it discovers a new host in its cover-
age area.

In Java, the SNA servant gets the list of the servers run-
ning on a certain host by querying thermiregistry of the
host as follows:

String[] servers = Naming.list("//"+host);

Remote[] serverStubs;

for(int i=0;i<servers.length;i++)

serverStubs[i] = Naming.lookup(servers[i]);

Similar investigation can be performed using.NET on a
UDDI registry with the following code:

UddiConnection myConn = new UddiConnection(host);

FindService fs = new FindService("*");

ServiceList servList = fs.Send(myConn);

WhereasCORBA-based LDIS servers can be localized
through theCORBA’s implementation repositories. The
implementation repositories are daemon processes that have
a server table keeping track of the running servers. This ta-
ble contains all information necessary for localizing a server
(i.e., name, host and port) and the necessary stuff (e.g., a
POA reference) for binding to the LDIS servers.

Section 5.1 is devoted to face the problems related to the
coexistence of the previously mentioned technologies in a
single entity with an hybrid architecture: the SNA servant.

Note that some nonstandard packages supporting the
UDDI registry fromJava are already available (e.g., the
IBM UDDI4J [15]). These approaches are currently under
investigation as an aid to limit the need of exploitingJava-
.NET interoperability for detecting services.

4Please note, that the plural is used because more than a technology
can be available on a certain host and the SNA servant must query each
possible repository.

5.3 Service Awareness

Service awareness is the key feature of the behavior of
the SNA servants. To provide the client with services, the
SNA servants must be aware of the services offered by a
LDIS server, that is, by using an object-oriented parlance,
they must access to thepublic interface of the LDIS object.
Moreover, they must be able to render available such ser-
vices, that is, by exploiting the public interface, they must
be able to invoke the methods provided by the server.

Reflection [20] helps in carrying out these actions.In-
trospection allows the investigation of the server looking
for the service structure (that is, the signature of the corre-
sponding method), whereasintercession allows requesting
and obtaining the service (that is, to invoke the correspond-
ing method and to get the result). Both.NET andJava are
intrinsically reflective in nature therefore they provide the
programmer with the basic mechanism for LDIS server in-
trospection and intercession.

Basically when a SNA servant meets aJava server, the
servant gets the list of the services (i.e., methods) provided
by the server (i.e., an object) by inspecting its class:

Class serverClass = serverStub[i].getClass();

Method[] serviceList = serverClass.getMethods();

Whereas, the SNA servant provides the service by for-
warding the request to the service representative obtained
during server inspection:

serviceList[j].invoke(serverStub[i], arguments);

where serverStub[i] is the representative of a LDIS
server (see section 5.2).

Similar steps can be carried out in the.NET framework
by exploiting the classes in theSystem.Reflection names-
pace. Thecommon language run-time (CLR) allows the
SNA servant of investigating themetadata of the server
package.

string serviceURL =

GetServiceURL5(servList[i].ServiceInfos);

Type serverClass = GetTypeFromWSDL5(serviceURL);

object server =

Activator.GetObject(serverClass, serviceURL);

MethodInfo[] ServiceList =

serverClass.GetMethods();

ServiceList[j].Invoke(server, arguments);

5Note thatGetServiceURL andGetTypeFromWSDL are dummy
functions that are used for hiding some irrelevant details omitted for sake
of clarity.

5



Thence, the SNA servant can invoke the service through
its metadata.

CORBA does not provide real reflective facilities for in-
specting LDISs exploiting its technology but service aware-
ness can be achieved as well querying the implementation
repository [12]. The implementation repository has been
designed for providing a client with an implementation to
the service they are requiring. It can also be used, by look-
ing at the server table, for becoming aware of the services
provided by a host.

5.4 Service Pool

As explained in section 5.3, the SNA servant provides
the client with some services by exploiting intercession on
representatives of such services. Therefore, each servant
can provide as many services as many service representa-
tives have been collected and are directly available to the
servant.

The service pool is the data structure put in charge of
storing service representatives. The heterogeneity of archi-
tectures, that can interact with the SNA servants, has raised
two issues directly related to service pool content and the
interoperability property:

(i) what is a representative and how to store/retrieve it;

(ii) how a representative running on theJava virtual ma-
chine (JVM) can coexist with one running on the.NET
framework.

Stubs andProxies are respectively representatives of remote
servers inJava RMI [23] and.NET frameworks. Through
stubs and proxies, it is possible to retrieve the list of the
provided services and to build a representative of these ser-
vices6 that will be used by the SNA servant for invoking the
service. Whereas,CORBA-based services do not require a
representative of the services on the client-side. They sim-
ply require an object able to ask the server for the service
by using the provided communication protocol, theinter-
net inter-orb protocol (IIOP). Java RMI can communicate
with CORBA-based servers by exploitingRMI-IIOP [24].
Hence,CORBA-based LDIS servers have been assimilated
to Java objects and the service pool store a dummy stub
able to connect to theCORBA-based service.

Of course,.NET and Java objects are not compatible
and it is necessary a special infrastructure for overcoming
this problem and transparently invoking a service indepen-
dently of the technology adopted by the server. Therefore,
the dual nature of the servant architecture has repercussions
on the service pool.

6In Java and .NET, service representatives are respectively instances
of Method andMethodInfo classes.

In the hybrid architecture of the SNA servant (see sec-
tion 5.1) the responsibility for a task is given to the compo-
nent that does the job best. TheJVM is best at runningJa-
va bytecode, and theCLR is best at running.NET IL. There-
fore, the invocation of.NET-based service is demanded to
the SNA servant.NET proxy whereas the invocation ofJa-
va-based code is directly invoked by theJVM (cf. sec-
tion 5.1).

The service pool is a data structure that masks this hybrid
nature providing the servant with an uniform interface to the
gathered services. Each service request directed to the pool
is automatically forwarded to the component of the SNA
servant able to invoke it.

Moreover, the service pool is used to handle service clas-
sification, service automatic roaming/routing and service
reliability/availability. In the pool there will be a representa-
tive for any kind of service. Such representatives will refer
to the closest or more reliable implementation of the cor-
responding services. The service pool is indexed on a ser-
vice description similar to theWSDL [9]. Note that.NET
services already have aWSDL description, whereasJava
services are consistently described by the SunWSDL exten-
sion. The SNA servants use this description both for filling
up the service pool with services and for skimming the ser-
vice pool off duplicated services, i.e., services with a simi-
lar description. Service pool indexing is based on services
ontologies as described in [29], these ontologies also help
in determining when two services are similar. The service
pool is purged of services no longer active or replaced by a
better service when the SNA servant coverage area changed.
In this way, the growth of the service pool is limited.

Figure 1 shows some details of the inner and modular ar-
chitecture of a SNA servant and its interaction with servers
in the network. Each step — that is (1) server discovery, (2)
service discovery, (3) service classification and finally (4)
service brokering to the final user — is entrusted to mod-
ules. A modular architecture provides the necessary flexi-
bility to extend the approach to technologies do not consid-
ered yet. Moreover, these modules, except for the last one
whose execution is asynchronous and depends on the user
requirements, form a sort of pipeline that allow the use of a
multithreaded architecture for speeding up the SNA servant
performances.

6 Related Works

6.1 Service Discovery

Many projects are focused on centralized approaches
that assume the presence of a node keeping a service repos-
itory. LDIS servers register their services to such a reposi-
tory and clients ask it for a service. Proposed architectures
can be classified into three branches: (i) centralized query,

6



server
discovery

service
discovery

SNA
Servant

service
classification

service
brokering

remote host

remote host

.NET
Java

se
rv

ic
e 

po
ol

kernel

remote host

remote host

remote host

remote host

remote host

service probing

ser
vice

 prob
ing

ser
vic

e p
rob

ing

service probing

1

2 3

4

������
���
������
���

���
�

������

	
����

Figure 1. The architecture of the SNA servants and their interaction with the environment.

(ii) local disconnected query and (iii) local interconnected
query.

Theweb services [5] architecture is an example of a cen-
tralized query architecture. It uses a UDDI server [26] to
broker services. Each query for available services must be
directed to the UDDI server that needs to be known to ev-
eryone and could become a bottleneck.

In the local disconnected query architecture, the entire
network is divided in subnetworks and alocal coordinator is
responsible for coordinating the queries and service adver-
tisement of its subnetwork. A mobile device must ask for
the local coordinator when it passes from a sub-network to
another. This kind of architecture is called “disconnected”
because there is no information sharing among coordina-
tors. The local disconnected query architecture is exploited
in [27] and [16].

In the local interconnected query architecture, there still
are local coordinators managing queries and service ad-
vertisement, but these coordinators also share information.
This is the case of thesalutation architecture [25] that em-
ploys brokers namedsalutation managers. Each query is
directed to a local salutation manager that provides the an-
swer or routes the request to another manager.

All the above mentioned architectures are poorly scal-
able because the repositories could become a bottleneck
when the network grows larger. Moreover, each repository
uses legacy protocols for communicating with servers and
clients, therefore both clients and servers must be compliant
with the infrastructure adopted by the repository in order to
exploit its services. Thelegacy aspect of these architectures
often hinders service fruition from foreign clients.

The SNA servants are independent of any specific archi-
tectures, cross-platform and able to interact with the most
diffuse repositories. Thence, the mobile device can enter in
a foreign network and SNA servants are able to exploit the
services of that network without imposing an infrastructure
layer and without giving up exploiting some services.

6.2 Distributed Middleware

Java RMI [23], CORBA [22] and .NET [13] can be
considered distributed middleware, that is, a set of services
that resides between the application and the operating sys-
tem and aims to facilitate the development, deployment,
and management of distributed applications [10].CORBA
and .NET are mainly service-oriented middleware whereas
Java RMI is a server-oriented middleware where the dis-
tinction is related to their approach to service provisioning.
Server-oriented middleware will provide service through a
named server, that is, the client asks for a service to a spe-
cific remote server and the middleware will link the client
to exactly that server, whereas service-oriented middleware
links the client to the service without worrying about who
is serving such a request.

The SNA servant infrastructure can also be considered a
distributed middleware which provides mobile devices with
a mechanism for retrieving services available in the sur-
roundings. The approach is obviously service-oriented be-
cause the service pool hides to the user the nature, the loca-
tion and the identity of the server providing the service. The
user will simply retrieve a service whose description satisfy
its request.

Both .NET and CORBA supply a mechanism (respec-

7



tively WSDL description and the interface-based approach)
for describing the services, but similar services, i.e., ser-
vices that differ in the description or in the applicability
rules are treated as different services, therefore their ap-
proach is redundant and also serving requests in a balanced
way is difficult. SNA servants use ontologies to classify
the discovered services for similarity, similar services are
treated as the same service.

Besides,.NET, CORBA andJava RMI foresee the use
of their own infrastructure to be able to provide the servers
and the clients with their services. Therefore, both servers
and clients must be compliant to such infrastructure in order
to exploit the middleware services, e.g., inCORBA client
must direct their query to theORB. The SNA servants, be-
cause of reflection, are independent of every underlying ar-
chitecture, can exploit the infrastructure provided by the
other middleware and transparently provide the user/client
with the services without imposing the use of a middleware-
dependent API.

The major difference between SNA servants approach
and the other middleware-based approaches is represented
by the fact that a SNA servant is a sort of architecture-
independent broker that is able to adapt itself to the archi-
tecture of the host network and to directly query a server for
the interface of its services and then to use such interfaces
for getting the services. Therefore, the SNA servants nei-
ther need their own service repository nor use legacy pro-
tocols for achieving the services of the host network, but
adapt themselves to the technology exploited by the LDIS
servers.

7 Future Works

The SNA servants approach has several possibilities and
many of them are still to be explored. In the future we are
planning to enhance the interoperability of the approach and
the mechanism for service classification in order to com-
pose them.

7.1 Global Interoperability

At the moment, SNA servants do not take in considera-
tion services provided by servers that are notCORBA, .NET
or Java compliant such as TCP/IP based servers (e.g. a
“classic” web server). Therefore, the SNA servants do not
achieve a global interoperability with all kinds of servers
yet. In the future, this limitation will be overcome provid-
ing such kind of servers with a wrapper, calledreflective
proxy agent, that enables the interaction of the wrapped
server with our SNA servants.

In this way, the SNA servants should be able to discover
and inspect these reflective proxy agents as well as the LDIS

serversCORBA, .NET or Java compliant whereas the re-
flective proxy agents will provide a transparent reflection-
based interfaces to standard services without modifying the
structure of the corresponding servers.

To be compliant with the SNA servants infrastructure
the reflective proxy agents should wrap the server au-
tonomously, that is, they should be able to detect these
servers (e.g., by sniffing the network traffic) and adapting
their structure to the communication protocol of the de-
tected server. For example, if the detected server is a web
server the reflective proxy agent must translate each servant
request to an HTTP request.

We strongly believe usage of reflection-proxies dissem-
inated on the network can be a good compromise to grant
interoperability with all kinds of servers without imposing
a change to their structure in order to support the approach.

7.2 Service Composition

A completely new feature that should be interesting to
investigate, and would be a natural extension of the SNA
servant is the ability to create a new service as the composi-
tion of two or more services available in the coverage area
of (and therefore already gathered by) the SNA servant. An
example of service composition could be a navigation sys-
tem service that may get composed by acompass and amap
service discovered in the coverage area.

The advantages of service composition are easily under-
standable: a larger number of services will be available in a
coverage area while a fewer number of LDISs are necessary
to provide them in the same area; obtaining also a reduction
of network congestion. Moreover, service composition of-
fers a simpler way for service customization.

To compose services, as well as to compose object func-
tionalities, is not a simple task [21] but we trust that by ex-
ploiting .NET generics [18] and by adding some constraints
on service composability we should get a good compromise
among composition intractability and powerfulness. The
basic idea consists of categorizing the gathered services in
generic classes and of planning the composition in advance
on these generics. When a SNA servant discovers a service
the corresponding generic class can be instantiated provid-
ing a base for the construction of a novel service by exploit-
ing the planned service composition.

In the navigation system of the example above, the
generic map service could be described by a generic class
parameterized on (among other things) the type of the co-
ordinate system adopted by the map. Therefore when a real
map service is discovered this parameter is instantiated fol-
lowing the characterization (Cartesian or polar system) of
the just discovered service. Similar steps are taken when
a compass service is discovered. Then a pre-defined com-
position rule can be applied to get the expected navigation

8



service. Moreover, this approach allows the novel service to
adopt the best implementation for the required component
services choosing among the services that the SNA servant
has available in the service pool.

8 Conclusions

This paper discussed about wireless service provisioning
in ad-hoc networks. We presented a service-oriented mid-
dleware for location dependent service provisioning based
on reflection. This middleware exploits SNA servants as
local service providers on a mobile device to provide the
user with surrounding LDISs as they are discovered. By
means of SNA servants we grant architecture-independency
and service awareness to the final client application. Many
issues about SNA servants have been discussed and we ar-
gued about their adoption will lead to (i) cross-platform in-
teroperability, (ii) easier service discovery and (iii) services
composition. Even so, many issues still exists and are the
subject of ongoing work. During the paper we addressed
security, which should be studied at the infrastructure level,
and legacy to existing TCP-based services like web servers
and DBMS. We strongly believe that the adoption of the
SNA servants architecture will lead to a better service ex-
ploitation and deployment on next generation wireless net-
works.

Acknowledgements

This work has been partially supported by Italian MIUR
(FIRB “Web-Minds” project N. RBNE01WEJT005).

References

[1] M. Ancona, W. Cazzola, and D. D’Agostino. Smart Data
Caching in Archeological Wireless Applications: thePAST
Solution. In A. Clematis, editor,Proceedings of the 11th Eu-
romicro Conference on Parallel, Distributed and Network-
Based Processing (Euromicro PDP 2003), pages 532–536,
Genova, Italy, on 5th-7nd of Feb. 2003. IEEE Computer So-
ciety Press. ISBN: 0-7695-1875-3.

[2] K. Arnold and J. Gosling. The Java Programming Lan-
guage. The Java Series ... from the Source. Addison-Wesley,
Reading, Massachusetts, second edition, Dec. 1997.

[3] Bluetooth SIG. Specification of the Bluetooth System Ver-
sion 1.1.Core, Specification Volume 1, Feb. 2001. Available
athttp://www.bluetooth.org.

[4] D. G. Bobrow, R. G. Gabriel, and J. L. White.CLOS in
Context - The Shape of the Design Space. In A. Pæpcke,
editor,Object Oriented Programming: TheCLOS Perspec-
tive, pages 29–61. MIT Press, 1993.

[5] D. Booth, M. Champion, C. Ferris, F. McCabe, E. New-
comer, and D. Orchard. Web Services Architecture. Techni-
cal Report, May 2003. Available athttp://www.w3.org/
TR/2003/WD-ws-arch-20030514/.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1. W3C Rec-
ommendation available athttp://www.w3.org/TR/SOAP,
May 2000.

[7] K. Cheverst, N. Davies, K. Mitchell, and A. Friday. Ex-
periences of Developing and Deploying a Context-Aware
Tourist Guide: The Lancaster Guide Project. InProceed-
ings of the 6th Annual International Conference on Mobile
Computing and Networking (Mobicom 2000), pages 20–31,
New York, USA, 2000. ACM Press.

[8] R. S. Chin and S. T. Chanson. Distribuited Object-Based
Programming Systems.ACM Computing Surveys, 23(1):91–
124, Mar. 1991.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
W3C Recommendation available athttp://www.w3.org/

TR/wsdl, Mar. 2001.
[10] G. Coulson. What is Reflective Middleware? In IEEE

Distributed Systems On-Line, 2000. http://boole.
computer.org/dsonline/middleware/RM.htm.

[11] J. Ferber. Computational Reflection in Class Based Ob-
ject Oriented Languages. InProceedings of 4th Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), volume 24 ofSigplan Notices,
pages 317–326. ACM, Oct. 1989.

[12] M. Henning and S. Vinoski.AdvancedCORBA Program-
ming withC++. Addison-Wesley, Reading, Massachusetts,
1999.

[13] K. Hoffman, J. Gabriel, D. Gosnell, J. Hasan, C. Holm,
E. Musters, J. Narkiewickz, J. Schenken, T. Thangarathi-
nam, S. Wylie, and J. Ortiz.Professional.NET Framework.
Wrox Press., 2001.

[14] J.-P. Hubaux, L. Buttýan, and S.Čapkun. The Quest for
Security in Mobile Ad Hoc Networks. InProceeding of the
2nd ACM Symposium on Mobile Ad Hoc Networking and
Computing, Long Beach, CA, Oct. 2001.

[15] IBM and HP. UDDI4J Version 2.0, Jan. 2003. Avail-
able at http://www-124.ibm.com/developerworks/
oss/uddi4j/.

[16] J. Jawanda. Mobile Service Discovery over Wireless Links.
Internet Draft, Nov. 1998.

[17] JNBridge LLC. ConnectingJava with the .NET Common
Language Interface: The JNBridgePro Solution. Technical
report, 2002.

[18] A. Kennedy and D. Syme. Design and Implementation of
Generics for the.NET Common Language Runtime. In
Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI01), pages 1–12,
Snowbird, Utah, USA, June 2001.

[19] D. L. Lee, W.-C. Lee, J. Xu, and B. Zheng. Data Manage-
ment in Location-Dependent Information Services.IEEE
Pervasive Computing, 1(3):65–72, 2002.

[20] P. Maes. Concepts and Experiments in Computational Re-
flection. In N. K. Meyrowitz, editor,Proceedings of the 2nd
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’87), volume 22 ofSig-
plan Notices, pages 147–156, Orlando, Florida, USA, Oct.
1987. ACM.

9

http://www.bluetooth.org
http://www.w3.org/TR/2003/WD-ws-arch-20030514/
http://www.w3.org/TR/2003/WD-ws-arch-20030514/
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://boole.computer.org/dsonline/middleware/RM.htm
http://boole.computer.org/dsonline/middleware/RM.htm
http://www-124.ibm.com/developerworks/oss/uddi4j/
http://www-124.ibm.com/developerworks/oss/uddi4j/


[21] P. Mulet, J. Malenfant, and P. Cointe. Towards a Method-
ology for Explicit Composition of MetaObjects. In
Proceedings of the 10th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’95), volume 30 ofSigplan Notice, pages
316–330, Austin, Texas, USA, Oct. 1995. ACM.

[22] Object Management Group. Common Object Request Bro-
ker Architecture: Core Specification. Technical Report
2002.12.06 Revision V.3.0.2, OMG, Dec. 2002.

[23] SUN Microsystems. JavaTM Remote Method Invocation
- Distributed Computing forJava. White paper, SUN Mi-
crosystems, 1998. Internet Publication -http://www.sun.

com.

[24] SUN Microsystems.JavaTM RMI over IIOP. White paper,
SUN Microsystems, 1999. Internet Publication -http://

java.sun.com.

[25] The Salutation Consortium. Salutation Architecture Spec-
ification Version 2.1, 1999. Available athttp://www.
salutation.org.

[26] UDDI.org. UDDI: Universal Description, Discovery
and Integration. White paper, Sept. 2000. Available at
http://www.uddi.org/pubs/Iru_UDDI_Technical_

White_Paper.pdf.
[27] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service

Location Protocol. IETF RFC 2165, June 1997.
[28] A. Weimerskirch and G. Thonet. A Distributed Light-

Weight Authentication Model for Ad-hoc Networks. In
K. Kim, editor,Proceedings of the 4th International Confer-
ence on Information Security and Cryptology (ICISC 2001),
LNCS 2288, pages 341–354, Seoul, Korea, Dec. 2001.
Springer.

[29] P. Weinstein and W. P. Birmingham. Runtime Classifica-
tion of Agent Services. InProceedings of the AAAI-97
Spring Symposium on Ontological Engineering, Stanford,
Palo Alto, CA, USA, Mar. 1997.

[30] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks.IEEE
Network, 13(6):24–30, Nov. 1999.

10

http://www.sun.com
http://www.sun.com
http://java.sun.com
http://java.sun.com
http://www.salutation.org
http://www.salutation.org
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

	1 Introduction
	2 Background
	2.1 Computational Reflection.
	2.2 Distributed Middleware

	3 Seamless Nomadic System-Aware Servants
	4 SNA Servant Benefits & Drawbacks
	5 SNA Servants Technical Issues
	5.1 Cross-Platform Interoperability
	5.2 Localizing LDIS Servers
	5.3 Service Awareness
	5.4 Service Pool

	6 Related Works
	6.1 Service Discovery
	6.2 Distributed Middleware

	7 Future Works
	7.1 Global Interoperability
	7.2 Service Composition

	8 Conclusions

