
The Programming LanguageIo
Massimo AnconaandWalter Cazzola

DISI-Department of Informatics and Computer Science
University of Genova, Italy

{ancona|cazzola}@disi.unige.it

1 Introduction

Io is an experimental programming language designed forreflective programming. Io
is inspired byOberon, Modula-2, Pascal andC. Io has been designed as a tool for
understanding the essence ofreflection and for teachingreflective programming and its
implementation mechanisms in under-graduate courses, thusIo is avery concise lan-
guage. Nevertheless,Io is not a toy language: it is located at a mid distance between
toys languages and production languages - despite its simplicity, it can be used for de-
veloping complex and modular programs that can be executed with a good efficiency.
Io has been kept as simple as possible by discarding all those features neither implic-
itly nor explicitly connected with reflective programming. Reflection is based on the
following concept:

”... a computational process could be made to reason about itself in virtue
of comprising an ingredient process (interpreter)formally manipulating
representations of its own operations and structures.” [2]

From the above definition, we can observe that:

• Reflection is not tight to specific linguistic constructs, but mainly a property of
the run-time execution environment RTE1 and of specific mechanisms entrusted
into its run-time system library RTS.

• Moreover, the role of an interpreter is not essential: the same mechanisms can
be more efficiently (and easily) implemented into a compiled language.

In other wordsany reasonable programming language can be made reflectivewithout
consistent extensions by enhancing its RTE/RTS with adequate capabilities and by
adding only few predefined procedures. This fact does not preclude from adding to the
language specific constructs for entrusting into it reflective features. What we assert
here is that conceptually reflection is a very low level paradigm not necessarily tight
to specific syntactic and semantic structures of a language, even if they may enhance
program readability and development (see, for example the well-known meta-object
protocol [1]).

It follows that, if we restrict our attention only to the language constructs we cannot
considerIo as an innovative language: its originality lies in the architecture of its RTE,

1We define as RTE the set of machine-code (virtual intermediate code for interpreters) and data structures
of the translated program together with all data structures and dedicated machine (or virtual) register, plus
the run-time system library (RTS) supporting a program execution.

1

Massimo Ancona and Walter Cazzola

that makes it strongly tight to reflection from its early design phase. By the way, the
main features of the language are:

• Modularity, similar to that ofModula-2, that supports modular programming
via the mechanism of separate compilations enhanced withmodule inheritance.

• Support for complex data types and data abstraction for the development of ab-
stract data-types.

• Simple implementation — the size of the compiler source code (written inIo) is
about 2400 statements, that of the interpreter (written inPascal andC) 500-700
statements.

This report is a concise reference for people interested in exploitingIo’s reflective
capabilities. Its function is to serve as a quick reference for supporting the development
of reflective programs and for understanding how reflection is entrusted into the RTE
of Io.

To this purpose,Io has been completely implemented via an interpreted virtual
machine calledIoVM. However, we stress that our concept of reflection does not require
an interpreted virtual machine approach like other reflective systems — our method
can be more easily implemented for compiled programming languages (e.g.Oberon,
Modula-2, C++ or C) with a remarkable gain in efficiency.

The nameIo has two motivations: it comes from the Italian pronoun “io” (“the self”
or “I myself”) which is significantly “reflective”, and from the name of a satellite of
Jupiter, discovered by Galileo on 1610, which is a tribute to the programming language
Oberon2, which in turn borrows its name from a satellite of Neptune.

2 Syntax

The meta-language used in this report to specify the syntax ofIo is based on the ex-
tended Backus-Naur formalism (EBNF). Brackets ‘[’ and ‘]’ denote optionality of
the enclosed sentential form, and braces ‘{’ and ‘}’ denote its repetition (possibly 0
times). Syntactic entities (non-terminal symbols) are denoted by English words ex-
pressing their intuitive meaning. Symbols of the language vocabulary (lexical tokens
or terminal symbols) are denoted by strings enclosed in quote marks or words written
in capital letters, the so-calledreserved words. Each EBNF rule is terminated by a dot.

3 Lexical Tokens

The lexical tokens used to constructIo programs are sequences of ASCII characters.
Tokens are classified into: identifiers, keywords, numbers, strings, operators, delim-
iters, and comments. Blanks and line breaks must not occur within symbols (except
in comments, and blanks in strings); they are ignored unless they are essential to sep-
arate two consecutive symbols.Io is case sensitive: capital and lower-case letters are
considered as being distinct.

2And to its precursorsModula-2 andPascal that strongly influencedIo architecture.

2

Massimo Ancona and Walter Cazzola

3.1 Identifiers

Identifiersare sequences of letters, underscore character and digits. The first character
cannot be a digit. Identifiers are symbols used to denote constants, types, variables,
procedures, modules and record fields.

IdChar = Letter | "_".

Ident = IdChar { IdChar | Digit }.

Examples:

x scan _Io_ Eos Get_Symbol Number

3.1.1 Reserved Identifier (or Keywords)

The following identifiers are reserved for use as keywords, they cannot be used other-
wise:

AND ARRAY AS BEGIN CASE CONST CYCLE DIV

DO DOWNTO ELSE ELSIF END EXIT FI FOR

FO FUNCTION GLOBAL IF IN MOD MODULE NIL

NOT OD OF OR PROCEDURE RECORD RETURN SET

THEN TO TYPE UNTIL USE VAR WHILE

3.2 Numbers

Numbersare (unsigned) integers or real numbers. Integers are sequences of digits and
may be followed by a suffix letter. If no suffix is specified, the representation is decimal.
The suffixH indicates hexadecimal representation.

A real number always contains a decimal point. Optionally it may also contain a
decimal scale factor that is preceded by the letterE, that means “times ten to the power
of.” A real number is of typeREAL.

Number = Integer | Real.

Integer = Digit { Digit } | Digit { HexDigit } "H".

Real = Digit { Digit } "." { Digit } [ScaleFactor].

ScaleFactor = "E" ["+" | "-"] Digit { Digit }.

HexDigit = Digit | "A" | "B" | "C" | "D" | "E" | "F".

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Examples:

1997 100H 12.3 4.567E8 0.57712566E-6

3.3 Character Literals

Character literalsare either a single ASCII character enclosed in quote marks or by
the ordinal number of the character in hexadecimal notation followed by the letterX.
The character’ is written’’.

CharConstant = "’" char "’" | Digit { HexDigit } "X".

Examples:

Hex_Int = 01FFFH; CR = 0DX; LF = 0AX; U = ’U’; QM = ’’’’;

3

Massimo Ancona and Walter Cazzola

3.4 String Literal

A string literal is a character sequence enclosed in quote marks (’). Any quote mark in
it has to be doubled. The number of characters in a string literal is called thelengthof
the string. The type of a string literal isARRAY[1..n] OF CHAR, wheren is the number
of character in the string. A string can be assigned to and compared with arrays of
characters of the same type and of the same length.

String = ’ { character } ’.

Examples:

’Io’ ’Don’’t worry!’

3.5 Set Literal

A set literal is a value of type set whose syntax is the following:

Set = "[" [Element { "," Element }] "]".

Element = OrdinalConstant [".." OrdinalConstant].

OrdinalConstant= Char | Integer.

where ”Constant” above denotes literals of the same ordinal type.

3.6 Special Symbols

Special Symbolsare operators and delimiters used to delimit the syntactic units ofIo.
They are listed below:

+ * = , # ; | - / () [] &

\ ~ ^ . .. > < >= <= <> := ’ :

3.7 Comments

Commentsmay be inserted between any two symbols in a program. They are arbitrary
character sequences opened by the bracket(* and closed by*). Comments do not
affect the meaning of a program and may be nested.

4 Scope and Declarations

An identifier is a name denoting a data entry and must be introduced by a declaration,
unless it is a predefined identifier. Declarations also serve to specify certain permanent
properties of an object, such as whether it is a constant, a type, a module, a variable,
or a subprogram. The name is used to refer to associated entity and can only be used
within a region of the program called itsscope. Each declaration is a definition of the
declared identifier, unless the identifier is specified into ause clause or is the name of a
subprogram declaration which does not provides a body (forward declaration).

No identifier may denote more than one object within a given scope. The scope
extends textually from the point of the declaration to the end of the block (procedure or

4

Massimo Ancona and Walter Cazzola

module) to which the declaration belongs and hence to which the object islocal. The
scope rule has the following exceptions:

❶ If a typeT is defined aŝT1 (see§6.5), the identifierT1 can be declared textually
following the declaration ofT, but it must lie within the same scope.

❷ Field identifiers of a record declaration (see§6.4) are valid in field designators
only.

A top-level entity (either variable, type, constant or subprogram) is an entity declared
in the outermost scope of a module, any other entity is alocal entity. Every identifier in
the global scope (top-level) may be included into an export list (GLOBAL)3 to indicate
that it is exported from its declaring module. In this case, the identifier is accessible
from other modules that specify it, or the enclosing module, in ause list. In the first
case the identifier may be freely used in the importing module, in the second case the
identifier may be referred in qualified notation, i.e. by prefixing it by the name of the
declaring module followed a period (see section11). The prefix and the identifier (with
the separating period) are called aqualified identifier.

QualIdent = [Ident "."] Ident.

IdentDef = Ident ["*"].

ExportClause = "GLOBAL" IdList ";"

The following identifiers are predefined; their meaning is defined in the indicated sec-
tions:

ABS (9.2) EXP (9.2) NIL (6.5) ROUND (9.2)
ARCTAN (9.2) FALSE (6.1) ODD (9.2) SIN (9.2)
BOOLEAN (6.1) FREE (6.5) ORD (9.2) SQR (9.2)
CHAR (6.1) HALT (9.2) OUTPUT (10) SQRT (9.2)
CHR (9.2) IDLE (9.2) PRED (6.1) SUCC (6.1)
CLOSE (10) INT (9.2) READ (10) TEXT (6.1)
COS (9.2) INPUT (10) READLN (10) TRUE (6.1)
EMIT (??) INTEGER (6.1) REAL (6.1) TRUNC (9.2)
EOF (10) LN (9.2) RESET (10) WRITE (10)
EOLN (10) NEW (6.5) REWRITE (10) WRITELN (10)

5 Constant Declarations

A constant declaration is used to give a name to a constant value. A constant value is a
value that does not change during the program execution.

ConstantDeclaration = IdentDef "=" ConstantValue.

ConstantValue = Number | CharConstant | String | ConstantName.

Examples of constant declarations are

N = 100
null = 0X0
FF = 0XFF
all = ’xyzw’
m = N

3Record fields belonging to exported records are considered all visible in the present implementation.

5

Massimo Ancona and Walter Cazzola

6 Types and Type Declarations

A data type specifies the set of values which a given data item may have, and the
operations that could be performed upon it. A type definition introduces an identifier to
denote a type. InIo two data items have the same type, if the respective declarations the
same type identifier is used, for specifying their type, or both are declared in the same
declaration by means of the sameunnamed type definition. In other words,Io uses a
strict name equivalence rule for types. Types inIo may be basic types, or structured
types. Basic types areINTEGER, BOOLEAN, CHAR andREAL and are predefined. There
are three different structures, namely arrays, records and sets, with different component
selectors.

TypeDeclaration = IdentDef "=" Type.

Type = ArrayType | RecordType | PointerType | SetType | SubprogType.

Examples:

CONST c1=10; tmax=1000;

TYPE alfa = ARRAY[1..c1] OF CHAR;

wordref = ^word;

itemref = ^item;

word = RECORD

key:alfa;

first, last:itemref;

left, right:wordref

END;

item = RECORD

ln0: INTEGER;

next: itemref

END;

symset = SET OF 0..32;

6.1 Basic Types

Io provides the following basic types (denoted by predeclared identifiers) together with
a set of predefined function and procedures (described in 8.2 and 10.2) operating upon
them. The values of a given basic type are the following:

1. BOOLEAN the truth valuesTRUE andFALSE.
2. CHAR the characters of the extended ASCII set(0X..0FFX).
3. INTEGER the integers betweenminint andmaxint (hardware-dependent).
4. REAL real numbers betweenminreal andmaxreal (hardware-dependent).
5. TEXT text-streams: textual sequential files.

The typeINTEGER is included in typeREAL, in other words:

REAL⊇ INTEGER

The above relation causes coercion of an integer value to the corresponding real value
whenever a real value is expected and an integer is provided instead. Types 1, 2 and 3

6

Massimo Ancona and Walter Cazzola

together are calledordinal types. The operatorsSUCC andPRED are defined for ordinal
values and respectively compute the successor and the predecessor of their arguments
when defined.

6.2 Array Types

An array is an indexed structure consisting of a number of components, all of the same
type called theelement type. The individual elements are designated by an index with
values in anrange [a..b] of any ordinal type, called theindex type of the array. The
number of elements (b-a+1) of an array is called itslength.

ArrayType = ARRAY "[" Index { "," Index }"]" OF Type.

Index = OrdinalConstant ".." OrdinalConstant.

A declaration of the form:

ARRAY [L0..N0, L1..N1, ..., Lk..Nk] OF T

is a shorthand of the declaration

ARRAY [L0..N0] OF ARRAY [L1..N1] OF ... ARRAY [Lk..Nk] OF T

Examples of array types:

ARRAY [0,N] OF INTEGER

ARRAY [1..10,-20..20] OF REAL

6.2.1 Alpha Strings

There is a useful kind of array whose components are characters and index type is an
interval of integers[1..n]. This kind of array is called analpha-string. Examples:

TYPE string=ARRAY[1..6] OF CHAR;

VAR s:string;

s:=’abcdef’; (* OK *)

s:=’abcdefgh’; (* error different string lengths *)

6.3 Set Types

A set is a collection of values called elements all belonging to the same ordinal type
called theelement type.

SetType = "SET OF" OrdinalType.

OrdinalType = INTEGER | CHAR.

where Base is an interval of ordinal type. Examples

TYPE S = SET OF 1..10; CharSet = SET OF 0X..0FFX;

Io supports literal of type SETa la Pascal. For example, with the above types one can
write:

VAR s:S; s1: CharSet;

s := [1,3,5-8,10]; s1 := [’a’..’z’];

7

Massimo Ancona and Walter Cazzola

6.4 Record Types

A record type is a sequence of components, calledfieldseach with its own type, and
name (calledfield identifier). The scope of these field identifiers is the record definition
itself, but they are also visible within field designators (see8.2) referring to elements
of record variables.

RecordType = RECORD FieldListSequence END.

FieldListSequence = FieldList { ";" FieldList }.

FieldList = [IdentList ":" Type].

IdentList = IdentDef { "," IdentDef }.

If a record type is exported, all field identifiers in it are made visible outside the
declaring module. A more selective export, like that ofOberon will be implemented
in the next version ofIo. Examples of record types:

ARRAY[0..tmax] OF

RECORD

name:alfa;

kind: BOOLEAN;

level, val, adr: INTEGER

END;

6.5 Pointer Types

Variables of a pointer typeP assume as values pointers to variables of some typeT. The
pointer typeP is said to beboundto T, andT is thepointer base typeof P. T must be a
record, an array, or a set type.

PointerType = ^Type.

If p is a variable of typeP = ^T, then a call of the predefined procedureNEW(p) has
the following effect: a variable of typeT is allocated in free storage, and a pointer to
it is assigned top. This pointerp is of typeP; the referencedvariablep^ is of typeT.
Failure of allocation results inp obtaining the valueNIL. To any pointer variable may
be assigned the valueNIL, which points to no value at all. A call to the predefined
procedureFREE(p) frees the space taken by the variablep; an error occurs ifp is NIL.

6.6 Subprogram (Procedure/Function) Types

A subprogram type is a (named) type declaring a subprogram signature (heading).

SubprogramType = FunctionType | ProcedureType.

FunctionType = FUNCTION "(" [FormalParameters] ")" ":" FormalType.

ProcedureType = PROCEDURE ["(" FormalParameters ")"].

FormalParameters = FPSection { ";" FPSection }].

FPSection = [VAR] ident { "," ident } ":" FormalType.

FormalType = QualIdent.

Variables of a procedure typeT have a procedure as value. Anonymous subprogram
types are not allowed in variable declarations. For example the following declaration
generates an error message:

8

Massimo Ancona and Walter Cazzola

VAR p: PROCEDURE(VAR a: REAL; b:INTEGER); (* error *)

The abovenon-orthogonal restriction derives from the strict name-equivalence adopted
in Io for assignment equivalence: no assignment compatible procedure could be de-
fined otherwise (like in parameter list specification). A correct implementation of the
above example is:

TYPE PP = PROCEDURE(VAR a: REAL; b:INTEGER);

VAR p: PP;

7 Variable Declarations

A variable declaration is used to introduce an identifier naming a variable and to as-
sociate it with a data type. A variable name must be unique within a given scope.
Variables are allocated in computer memory and can hold values assigned to them.

VariableDeclaration = IdentList ":" Type.

Variables whose identifiers appear in the same variable declaration IdentList (e.g.,k,
k1, n in the below snippet of code) or that appear in different IdentList using the same
type identifier (e.g.,n, andc1 or id, anda in the below snippet of code) are (by
pair) of the same type; they are considered of different type otherwise (e.g.,aaa, bbb
in the below snippet of code). Examples of variable declarations (refer to the type
declarations in section6):

z, w: REAL;

root: wordref;

suspended: BOOLEAN;

k, k1, n: INTEGER;

id: alfa; ch, cho: CHAR;

f, g: TEXT;

a: alfa; c1: INTEGER;

mnemonic: ARRAY[0..7] OF ARRAY[1..5] OF CHAR;

declbegsys, statbegsys, facbegsys, mysys: symset;

table: ARRAY[0..tmax] OF

RECORD

name:alfa;

kind: INTEGER;

level,val,adr: INTEGER;

END;

aaa: ARRAY [1..100] OF REAL;

bbb: ARRAY [1..100] OF REAL;

8 Statements

Statements specify the actions to be performed by a program. There aresimpleand
compoundstatements. Simple statements are not composed of any parts that are them-
selves statements. They are the assignment, the procedure call, the return, cycle and

9

Massimo Ancona and Walter Cazzola

exit statements. Compound statements are composed of parts that are themselves state-
ments. They are bracketed by keywords giving a clear indication of the kind of se-
quencing, conditional, selective, and repetitive execution to be performed. A statement
may also be empty, in which case it denotes no action. The empty statement is included
in order to relax punctuation rules in statement sequences.

Statement = [Assignment | ProcedureCall | IfStatement |

CaseStatement | WhileStatement | DoUntilStatement |

ForStatement | DoLoopStatement | WithStatement |

EXIT | CYCLE | RETURN [Expression]].

8.1 Assignments

The assignment computes the value of an expression and stores the value in a variable.
The assignment operator is written as “:=” and pronounced as “becomes.”

Assignment = Designator ":=" Expression.

A designatoris an expression denoting a storage location. The assignment statement
must satisfy the following requirement: the type of the right-hand-side (RHS) expres-
sion must beassignment compatibleto the type of the left-hand-side (LHS) designator,
and its value must be a member of the left-hand designator type. The LHS designator
type isassignment compatiblewith the RHS expression type if:

❶ They are the same type;

❷ the LHS type isREAL and the RHS type isINTEGER;

❸ they are bothSET types with the same base type;

❹ the LHS type isARRAY[1..n] OF CHAR and the RHS is a string value of length
less or equal ton;

❺ the LHS type is apointer and the RHS value isNIL.

Strings can be assigned to any variable whose type is an array of characters, provided
the length of the string is equal (or less) than that of the array. Examples of assignments
(see variable declarations in section7):

table[c1].name:=’MyOwnName ’

suspended := ch = cho;

z := w + 1;

w := LN(1.44);

facbegsys := [1, 2, 14, 18. .22];

aaa[i] := w - z;

8.2 Subprograms Activation

Subprograms are activated by means of subprogram calls. A procedure is activated by
a procedure-call, while a function is activated by specifying its designator in an expres-
sion. A subprogram call may contain a list ofactual parametersthat must match in

10

Massimo Ancona and Walter Cazzola

position, number and type to the corresponding formal parameters declared in the sub-
program header of the procedure declaration (see section9). Parameter-less functions
are specified with an empty parameter list denoted by a pair of empty parenthesis();
parameter-less procedures are specified by their name standing alone.

Actual parameters are evaluated before the call and are substituted in place of their
corresponding formal parameters.

There are twomodesof parameter passing: byvariableand byvalue. For a formal
variable parameter of mode variable the corresponding actual parameter must be a des-
ignator denoting a variable whose type is assignment compatible to the corresponding
formal parameter type. If it designates an element of a structured variable, the selector
is evaluated when the formal/actual parameter substitution takes place, i.e., before the
execution of the procedure. If the formal parameter has mode value, the corresponding
actual parameter must be an expression which is evaluated prior to the procedure acti-
vation, and the computed value is assigned to the formal parameter which behaves, in
the subprogram body, like a local variable (see also section9.1).

ProcedureCall = Designator [ActualParameters].

Examples of procedure calls:

VarCall[i](x,y)

WRITELN(’value=’,j+3*i)

SIN(x)

8.3 Statement Sequences

Statement sequences specify a series of actions to be carried out, one after the other, in
the order specified.

StatementSequence = Statement { ";" Statement }.

8.4 If Statements

IfStatement = IF Expression THEN StatementSequence

{ ELSIF expression THEN StatementSequence }

[ELSE StatementSequence]

FI.

If statements specify the conditional execution of one of a sequence of statements, de-
pending on the value of one or more boolean expressions. The boolean expressions are
evaluated in sequence of occurrence, until one evaluates toTRUE, where after its asso-
ciated statement sequence is executed. If none of the boolean expressions is satisfied,
the statement sequence following the symbolELSE is executed, if there is one.
Example:

IF ch IN [’A’..’Z’] THEN BuildId

ELSIF ch IN [’0’..’9’] THEN BuildNum

ELSIF (ch >= 0X) AND (ch <= 020X) THEN ProcessControl

ELSE DoOtherWise

FI

11

Massimo Ancona and Walter Cazzola

8.5 Case Statements

A case statements is used to select and to execute one of a number of statement se-
quences based on the value of an expression. First, the case expression is evaluated,
then the statement sequence which is preceded by a case label list containing the com-
puted value is executed. The case expression and all the labels must be of the same
integer or char type. The case labels are constants, with no value occurring more than
once. If the value of the expression does not occur as a label of any case, the state-
ment sequence following the symbolELSE is executed if present, otherwise an error
condition is raised.

CaseStatement = CASE Expression OF Case { "\" Case }

[ELSE StatementSequence] FO.

Case = [CaseLabelList ":" StatementSequence].

CaseLabelList = CaseLabels { "," CaseLabels }.

CaseLabels = ConstExpression [".." ConstExpression].

Example:

CASE ch OF

’A’ .. ’Z’: ProcessLetter

\ ’0’ .. ’9’: ProcessNumber

ELSE DoOther

FO

8.6 While Statements

A while statement specifies the repeated execution of a statement sequence under the
control of a boolean expression. The expression evaluation and the statement execution
are repeated as long as the boolean expression yields the valueTRUE. If the initial
evaluation of the boolean expression yields the valueFALSE, the while statement is
equivalent to a null statement.

WhileStatement = WHILE Expression DO StatementSequence OD.

Examples:

WHILE sym IN [plus,minus]

DO

addop:=sym;

getsym;

term(fsys+[plus,minus]);

IF addop=plus THEN gen(opr,0,2) ELSE gen(opr,0,3) FI

OD

8.7 Do-Until Statements

A do-until statement specifies the repeated execution of a statement sequence until a
condition is satisfied. The statement sequence is executed at least once.

DoUntilStatement = DO StatementSequence UNTIL Expression.

12

Massimo Ancona and Walter Cazzola

Example:

id := a; i := 1; j := norw;

DO k := (i+j) DIV 2;

IF id <= word[k] THEN j := k-1 FI;

IF id >= word[k] THEN i := k+1 FI;

UNTIL i > j;

IF i-1 > j THEN sym := wsym[k] ELSE sym := ident FI

8.8 For Statement

A for statement specifies the repeated execution of a statement sequence while stepping
acontrol variableupward or downward by one from a starting value to an ending value.
The control variable must be local to the enclosing block.

ForStatement = FOR Ident ":=" Expression (TO|DOWNTO) Expression

DO StatementSequence OD.

The statement

FOR v := beg TO end DO statements OD

is equivalent to

v := beg;

WHILE v <= end DO statements; v := v+1 OD

The statement

FOR v := beg DOWNTO end DO statements OD

is equivalent to

v:=beg;

WHILE v >= temp DO statements; v := v-1 OD

Examples:

FOR i := 0 TO 79 DO k := k+a[i] OD

FOR i := 79 DOWNTO 1 DO k := k+a[i-1] OD

8.9 Do-Loop Statements

A do-loop statement specifies the endless repeated execution of a statement sequence.
The loop can be terminated by the execution of any exit statement within that sequence
(see section8.10).

LoopStatement = DO StatementSequence OD.

13

Massimo Ancona and Walter Cazzola

Example:

DO

IF t1 = NIL THEN EXIT FI;

IF k < t1.key THEN t2 := t1.left; p := TRUE

ELSIF k > t1.key THEN t2 := t1.right; p := FALSE

ELSE EXIT

FI;

t1 := t2

OD

8.10 Return, Exit and Cycle Statements

The return statement terminates the execution of a subprogram. If the subprogram is
a function the return statement must be followed by an expression providing the result
value computed by the function. The return statement indicates the termination of a
procedure or function, with the expression specifying the result of a function. Its type
must be identical to the result type specified in the procedure heading (see section9).

Function procedures require the presence of a return statement indicating the result
value. There may be several, although only one will be executed. In a procedure,
a return statement is implied by the end of the procedure body. An explicit return
statement therefore appears as an additional (probably exceptional) termination point.

An exit statement consists of the symbolEXIT. It specifies termination of the en-
closing loop statement and continuation with the statement following that loop state-
ment. A cycle statement consists of the symbolCYCLE. It specifies the termination of
the current iteration of the most deeply enclosing loop statement, and the starting of
a new one: all statements between theCYCLE statement and the end of the loop are
skipped and the loop is continued from its entry point.

Exit and cycle statements are contextually, although not syntactically bound to the
loop statement which contains them; a program can be terminated in every context by
a call to the predefined parameter-less procedureHALT.

9 Subprograms

A subprogram may be either aprocedure either afunction. A procedure is used to
perform an action, while a function is used to calculate a value. A subprogram is
composed by aheading (signature/prototype),and abody. When the declaration of a
subprogram is at the top-level of a module it is called a top-level subprogram. The
heading specifies the subprogram identifier, theformal parameters, and the result type
(for functions). The body contains declarations and statements. The procedure iden-
tifier may be repeated at the end of the procedure declaration for increasing program
readability.

Function subprograms are activated by a function designator as a constituent of an
expression; they yield a result that acts as an operand in the expression. Procedures
are activated by a procedure call. The function subprogram is distinguished in the
declaration by indication of the type of its result following the parameter list. Its body

14

Massimo Ancona and Walter Cazzola

must contain aRETURN statement which defines the result of the function procedure
and terminates the body execution.

In Io there are two kind of subprograms:assignable subprogram andnon-assignable
subprogram. Assignable subprograms are subprograms of named type, while non-
assignable subprograms have an anonymous type — they cannot be assigned to vari-
ables because of type incompatibility. Example:

TYPE F = FUNCTION(x: REAL): REAL;

VAR vf: F;

FUNCTION f: F;

(* body of f*)

END f;

FUNCTION g(x: REAL): REAL;

(* body of g*)

END g;

vf := f; (* OK same type *)

vf := g; (* error different types*)

All constants, variables, types, and subprograms declared within a subprogram body
arelocal to the subprogram. The values of local variables are undefined upon entry to
the subprogram. Since subprograms may be declared as local objects too, subprogram
declarations may be nested.

In addition to its formal parameters and locally declared entities, the entities de-
clared in the environment of the procedure are also visible in the procedure (with the
exception of those entities that have the same name as an object declared locally). The
use of the procedure identifier in a call within its declaration implies recursive activa-
tion of the procedure.

SubprogramDeclaration = FullDeclaration | ForwardDeclaration |

ForwardCompletion.

FullDeclaration = SubprogramHeading ";" SubprogramBody [Ident].

SubprogramHeading = ProcedureHeading | FunctionHeading.

ProcedureHeading = NamedProcheading | AnonymousProcHeading.

NamedProcheading = PROCEDURE IdentDef: ProcedureType.

AnonymousProcHeading = PROCEDURE IdentDef FormalParameters.

FunctionHeading = NamedFuncHeading | AnonymousFuncHeading.

NamedFuncHeading = FUNCTION IdentDef: FunctionType.

AnonymousFuncHeading = FUNCTION IdentDef FormalParameters ":" Resultype.

SubprogBody = DeclarationSequence CompoundStatement.

DeclarationSequence = { CONST { ConstantDeclaration ";" } |

TYPE { TypeDeclaration ";" } |

VAR { VariableDeclaration ";"

} { SubprogramDeclaration ";" }.

CompoundStatement = "BEGIN" StatementSequence "END".

ForwardDeclaration = (ForwardProcHeading|ForwardFuncHeading)";".

ForwardProcHeading = PROCEDURE "^" IdentDef FormalParameters.

ForwarFuncHeading = FUNCTION "^" IdentDef FormalParameters

15

Massimo Ancona and Walter Cazzola

":" Resultype.

ForwardCompletion = (PROCEDURE|FUNCTION) IdentDef ";"

SubprogramEnv ";"SubprogramBody [Ident].

A forward declarationsupports forward references to a subprogram that appears later
in the text in form offorward completion. A forward subprogram definition is broken
in two parts: a forward heading which specify the kind of a subprogram, the name
preceded by the forward marker “^”, the formal parameters if any, and a result type
for functions. Later and in the same scope, aforward completion clause has to be
provided for completing the subprogram declaration by including an environment and
a body. The forward completion starts with short heading recalling the kind (function or
procedure) and the name of the forward declaration to be completed (formal parameters
and result type must be omitted).

9.1 Formal Parameters

Formal parameters are identifiers which areboundto the actual parameters specified in
each subprogram call. The binding is performed when the procedure is called. There
are two modes of passing parameters, namely byvalueand byvariable. The mode
is indicated in the formal parameter list. Value parameters stand for local variables to
which the result of the evaluation of the corresponding actual parameter is assigned as
initial value. Variable parameters correspond to actual parameters that must be vari-
ables, and they stand for these variables. Variable parameters are indicated by the
symbolVAR, value parameters by the absence of the symbolVAR. A function procedure
without parameters may have an empty parameter list expressed by a pair of matching
parenthesis following its name. It must be called by a function designator whose actual
parameter list is written in the same way.

Formal parameters belong to the procedure environment (they are local to the pro-
cedure), i.e., their scope is the program text which constitutes the procedure declara-
tion.

FormalParameters = ["(" FPSection { ";" FPSection } ")"]

[":" QualIdent].

FPSection = ["VAR"] ident { "," ident } ":" FormalType.

FormalType = QualIdent.

The type of each formal parameter is specified in the parameter list. For variable pa-
rameters, it must be identical to the corresponding actual parameter’s type, except in
the case of a record, where it must be a base type of the corresponding actual param-
eter’s type. For value parameters, the rule of assignment holds (see section8.1). If a
formal parameter specifies a procedure type, then the corresponding actual parameter
must be either a procedure declared at the same level (level 0) or a variable (or param-
eter) of that procedure type. It cannot be a predefined procedure. The result type of a
procedure can be either a record either an array. Examples of procedure declarations:

TYPE alfa = ARRAY[1..c1] OF CHAR;

wordref = ^word;

itemref = ^item;

word = RECORD

16

Massimo Ancona and Walter Cazzola

key: alfa;

first, last: itemref;

left, right: wordref

END;

PROCEDURE printtree(w: wordref);

PROCEDURE printword(w: word);

VAR l: INTEGER; x:itemref;

BEGIN

WRITE(’ ’, w.key);

WRITE(g, ’ ’, w.key);

x := w.first; l := 0;

DO

IF l=c2 THEN

WRITELN; WRITELN(g); l := 0;

WRITE(’ ’:c1+1); WRITE(g,’ ’:c1+1)

FI;

l := l+1; WRITE(x.ln0:c3);

WRITE(g,x.ln0:c3); x := x.next;

UNTIL x = NIL;

WRITELN; WRITELN(g);

END; (*printword*)

BEGIN (*printree*)

IF w <> NIL THEN

printtree(w.left);printword(w^);printtree(w.right)

FI

END; (*printtree*)

9.2 Predefined Subprograms

The following table lists the predefined subprograms. Most subprograms arepolymor-
phic, i.e., they apply to several types of operands.v stands for a variable,x andn for
expressions, andT for a type.
Numeric, utility and I/O functions:

Name Argument type Result type Function

ABS(x) numeric type type ofx absolute value

ODD(x) integer type BOOLEAN x MOD 2 = 1

SQR(x) numeric type numeric type x2

SIN(x) REAL REAL sin(x)

COS(x) REAL REAL cos(x)

EXP(x) REAL REAL exp(e)

LN(x) REAL REAL loge(x)

SQRT(x) REAL REAL
√

x

ARCTAN(x) REAL REAL arctan(x)

17

Massimo Ancona and Walter Cazzola

Type conversion functions:

Name Argument type Result type Function

ORD(x) ordinal type INTEGER ordinal number ofx

CHR(x) integer type CHAR character with ordinal numberx

ROUND(x) REAL INTEGER INTEGER closest integer

TRUNC(x) REAL INTEGER INTEGER discard fractional part

Procedures for memory, and reflective shift-up/down management:

Name Argument type Function

NEW(v[,s]) pointer type, size allocatev^of size s

FREE(v) pointer type deallocatev^

HALT terminate program execution
IDLE[(v)] INTEGER constant suspend component execution

INT[(v)] INTEGER constant resume component execution

10 Input/Output

Io implements a built-in I/O facility, the sequential ASCII files called thetext-streams
(text for short) ofPascal. Texts are a predefined type that can be opened in two modes
readandwrite by means of the following primitives:

RESET(x,fnam,fext) opens a text-stream for reading (moderead)

REWRITE(x,fnam,fext) opens a text-stream for writing (modewrite if the stream
exists it is replaced with an empty stream.

Syntax:

RESET"(" [StreamDesignator ","] {FileName ["," FileExtension]]")".

REWRITE"(" [StreamDesignator ","] {FileName ["," FileExtension]]")".

Examples:

RESET(MyFile,’DataIn’,’dat’)

The following predefined procedures:

READ([x,]vl) reads data from the input stream

WRITE([x,]el) writes data to the output stream

EOF[(x)] senses the end of file, it holdsTRUE if the current file position is
at the end of the input stream.FALSE otherwise.

CLOSE(x) is a procedure for closing the connection with a stream.

18

Massimo Ancona and Walter Cazzola

Syntax:

READ"(" [StreamDesignator ","] VarDesignator{"," VarDesignator}")".

WRITE"(" [StreamDesignator ","] OutputExpression{"," OutputExpression}")".

OutputExpression = Expression [":" Expression [":" Expression]].

EOF["("StreamDesignator")"]

CLOSE "("StreamDesignator ")"

Text-streams are structured inlinesandIo provides three primitives for managing lines
of text:

READLN([x,]vl) reads data from the input stream up to the end of line

WRITELN([x,]el) writes data to the output stream and opens a new line

EOLN[(x)] senses the end of line, it holdsTRUE if the current file position
is at the end of the input line,FALSE otherwise.

READLN(fil,v1,...,vn) is equivalent to:READ(fil,v1,...,vn); READLN(fil).
While READLN(fil) will cause a skip to the beginning of the next line.
WRITELN(fil,e1,...,en) is equivalent to:WRITE(fil,e1,...,en); WRITELN(fil).

11 Modules

A program inIo is a collection of few (in general no more than 3) reflective and exe-
cutable components. Each component is composed by a collection of separately com-
piled modules. In turn, a module is a composed by set of declarations and a sequence
of statements.

Module = MODULE Ident["("Pragma{","Pragma}")"] ";"

[UseList]

[GlobList]

DeclarationSequence

BEGIN [StatementSequence]

END [Ident]".".

UseList = QualifiedUseList | UnqualifiedUseList.

UnqualifiedUseList = OF Ident USE Use { "," Use } ";".

QualifiedUseList = USE Use { "," Use } ";".

Use = Ident [AS Ident].

GlobList = GLOBAL Ident { "," Ident} ";".

Pragma = Io_Sys_ | TABLES ...

Identifiers that are to be visible in client modules, i.e., outside the declaring module,
must be listed in a GlobList declaration. The UseList specifies the identifiers declared
in other modules and used within the module. The global identifiers listed in a un-
qualified UseLists (they are declared in module ModulId) may be directly referred in
the code. In a qualified UseList all the identifiers of the list are interpreted as module
names: all the global identifiers declared in such modules must be accessed in qualified
notation (i.e. prefixed by the exporting module name). If an identifierx is exported by
a moduleM, andM is listed in a module’s import list, thenx is referred to asM.x. If

19

Massimo Ancona and Walter Cazzola

the formM AS M1 is used in the use list, that objectx declared withinM is referenced
asM1.x. Moreover, if an identifierx is listed in a unqualified UseList in the formx
AS y then the objectx will be referred asy. Identifiers that are to be visible in client
modules, i.e., outside the declaring module, must be listed in a GlobList declaration.
The statement sequence following the symbolBEGIN is executed when the component
is loaded. Example of module (see Appendix A whereIo Env is shown):

MODULE Io_Env_Tst;

OF Io_Env USE alng_, tmax1_, cmax_, wksize_,

alph_, sgtyp_, ordtyp_, sgt_, code_, tt_, t00_, csiz_, t_, b_, hb_, ws_,

maxf_, curf_, dfnam_, dfext_, ir_, pc_, ps_, lmax_, lncnt_,

ocnt_, blkcnt_, chrcnt_, fld_, dspy_;

VAR j: INTEGER; outff: TEXT; filnam: ARRAY[1..6] OF CHAR;

PROCEDURE writetables(i1: INTEGER);

VAR i, i2: INTEGER;

BEGIN

(* body of the procedure *)

END (*writetables*);

PROCEDURE writecode;

VAR i: INTEGER;

BEGIN

WRITELN(outff, ’code’);

FOR i:=0 TO csiz_ DO

WRITELN(outff, code_[i].f, code_[i].x, code_[i].y)

OD

END (*writecode*);

BEGIN (*main*)

WRITE(’progname>’);

READ(filnam);

REWRITE(outff, filnam, ’cic’);

writetables(t00_);

writecode;

FOR j := 1 TO 7 DO WRITELN(outff, fld_[j]) OD

END.

11.1 Module Inheritance and Interfaces

Modules can also inherit from other modules. Inheritance is obtained by exporting
imported entities in aGLOBAL clause. Such entitiesgain adefinition status that equates
them to entities defined into the module itself, thus they can be exported. However,
in each executable component a module is instantiated only once; it follows that the
direct use of an object imported from the defining module is equivalent to its indirect
use through an intermediate inheriting module because all references related to the
same module are unified by connecting them with the unique instance of the module
included into each importing component.Io compiler maintains in its symbol tables

20

Massimo Ancona and Walter Cazzola

information for identifying all the instances of a module even if they have been renamed
(clauseAS). Example:

OF M USE a, b, c;

GLOBAL a, b;

In this examplea andb are inherited, i.e. they are made accessible to the importing
modules.

12 Expressions

Expressions are constructs for computing a value: they specify operators and data to
be operated upon. The simplest expression is composed by:

• The name of a variable, constant or subprogram and is called adesignator.

• A literal value such as a number, a character or a string.

Parentheses may be used to express specific associations of operators and operands.

12.1 Operands

A designator may possibly be qualified by module identifiers (see sections9 and8.2),
and it may be followed by selectors, if the designated object is an element of a structure.

The notationA[E] designates the element of the arrayA denoted by the value of
the expressionE. The type ofE must be an ordinal type. The formA[E1, E2, ...,
En] is a shorthand ofA[E1][E2]...[En]. If r is a record, thenr.f denotes the
field f of r. If p^ is a record, thenp.f denotes the fieldf of p^, i.e., the dot implies
dereferencing andp.f stands forp^.f; if p^ is an array thenp[E] denotes the element
of p^ indexed byE.

Designator = QualIdent { "." Ident | "[" ExpressionList "]" |

"(" QualIdent ")" | "^" }.

ExpressionList = Expression { "," Expression }.

If the designated object is a variable, then the designator refers to the variable’s current
value. If the object is a function, a designator without parameter list refers to that
function. If it is followed by a (possibly empty) parameter list, the designator implies
an activation of the function and stands for the value resulting from its execution. The
(types of the) actual parameters must correspond to the formal parameters as specified
in the procedure’s declaration (see section8.1). Examples of designators (they refer to
the examples in section7) are:

k (INTEGER)
a[k] (CHAR)
table[n].nam (alfa)
table[n].val (INTEGER)
t.key (INTEGER)
w (REAL)
mnemonic[k1] (ARRAY[1..5] OF CHAR)

21

Massimo Ancona and Walter Cazzola

12.2 Syntax of Expressions and Operators

The syntax of expressions is built over four classes of operators with four different
precedences (binding strengths). The operatorNOT (~) has the highest precedence, fol-
lowed by the multiplicative, the additive and finally the relational operators. Operators
of the same precedence associate from left to right. For example,h-l-m stands for
(h-l)-m.

Expression = SimpleExpression [Relation SimpleExpression].

Relation = "=" | "<>" | "<" | "<=" | ">" | ">=" | IN.

SimpleExpression = ["+" | "-"] Term { AddOperator Term }.

AddOperator = "+" | "-" | OR.

Term = Factor { MulOperator Factor }.

MulOperator = "*" | "/" | DIV | MOD | AND

Factor = Number | CharConstant | String | NIL | Set |

Designator [ActualParameters] | "(" Expression ")" | NOT Factor.

Set = "[" [Element { "," Element }] "]".

Element = OrdinalConstant [".." OrdinalConstant].

OrdinalConstant= Char | Integer.

ActualParameters = ["(" [ExpressionList] ")"].

12.2.1 Boolean Expressions

Boolean values are computed by means of relations or by combining boolean values
with the following logical operators

symbols result

OR or | logical disjunction
AND or & logical conjunction
NOT or ~ negation

These operators apply toBOOLEAN operands and yield aBOOLEAN result.

p OR q stands for “ifp thenTRUE, elseq”
p AND q stands for “ifp thenq, elseFALSE”
NOT p stands for “notp”

12.2.2 Set Expressions

A set is an unordered collection of elements all of the same type. A set may be empty
(denoted[]). The elements of a set must be values of an ordinal type (i.e. a subset of
typeINTEGER or CHAR). Sets may be operated with the following operators:

symbol result

+ union
- difference
* intersection

Examples

x - y = x * (-y)

22

Massimo Ancona and Walter Cazzola

12.2.3 Arithmetic Expressions

Arithmetic expressions are obtained by combining arithmetic values and variables with
the following operators

symbol result

+ sum
- difference
* product
/ quotient
DIV integer quotient
MOD modulus
OR or | integer bitwise AND
AND or & integer bitwise OR
NOT or ~ integer bitwise NOT

Every operation has a type, which determines the value it can take and the operations
that can be performed on that value. The operators+, -, *, and/ apply to operands
of numeric types. The type of the result is that operand’s type which includes the
other operand’s type. When used as operators with a single operand,- denotes sign
inversion and+ denotes the identity operation. The logical operatorsAND (&), OR (|)
andNOT (~) apply to integer operands and produce bitwiseand, or and not integer
results. The division (/) operator applies to numeric types and produces a result of real
type. The operatorsDIV andMOD apply to integer operands only. They are related by
the following formulas defined for any dividendx and positive divisorsy:

x = (x DIV y)∗y+(x MOD y), and0≤ (x MOD y)< y

12.2.4 Relations

Relations are composed by two expressions of the same scalar type (for the operator
IN if the first has typeT then the second must have typeSET OF T) compared to form
a truth value by one of the following relational operators:

symbol result

= equal
<> or # unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership

Relations are special cases of Boolean expressions. The ordering relations<, <=, >,
and>= apply to the numeric types,CHAR, and alpha-strings. Moreover,= and<> also
apply to the typeBOOLEAN, SET, POINTER, and subprogram types.x IN s stands for
“x is an element ofs.” x must be of an ordinal typeT (INTEGER or CHAR), ands of
typeSET OF T. Examples of expressions (refer to examples in7):

23

Massimo Ancona and Walter Cazzola

n DIV 3 (INTEGER)
~suspended|(ch=cho) (BOOLEAN)
(i+j) * (i-j) (INTEGER)
mysys - [8, 9, 13] (SET)
bbb[k1] + aaa[n] (REAL)
(0<=k)AND(k<100) (BOOLEAN)
table[4].name=’AlphaString’ (BOOLEAN)
k IN facbegsys (BOOLEAN)

References

[1] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow.The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, Massachusetts, 1991.

[2] Brian C. Smith. Reflection and Semantics in a Procedural Language. Technical
Report 272, MIT Laboratory of Computer Science, 1982.

A Reflective Programming

Io programs are intended to be executed in a variety of applicative environments rang-
ing from embedded real-time systems to environments for distributed applications. The
difference concerns the way programs are designed and developed by focusing the at-
tention on the operative environment and on reflective computing. Computational re-
flection is the activity performed by a computational agent when performing computa-
tions about its own computation.Io has a Reflective Run-Time Execution environment
(RRTE) which endows reflection into its basic semantics.

The design of a program starts with the localization of thecausality domains.A
computational systemS1 (with computational domainD1) is causally connected with
a computational systemS0 (with domainD0) if the internal data structures ofD1 rep-
resent computations inS0 and any change onD1 is reflectedin a corresponding effect
on systemS0. S1

4 is called the meta-level. The design is iterated for pointing out an
eventual meta-meta-levelS2 and so on. In this way, each application program is de-
composed intoreflective components Si , i = 0, ...,n. If n = 0 then the program is not
reflective and organized into a unique componentS0.

Once the layers have been determined, their mutualintra-layersinterface has to be
designed by defining the operations of each meta-level and the corresponding activation
mechanisms (or shift-up methods) to be used for their activation by the interpreter or
by the machine trap/ interrupt system (Io supports both external interrupts or software
supervisor calls inserted into the code); more sophisticate interface may be built over
it. As a consequence of the above schema, the translation of anIo program into an
executable image is different from a traditional compilation process.

4We reverse the traditional reflective tower inIo: level 0 is the non-reflective application layer, while
layers 1,2,.. are themeta-level, meta-meta-leveletc.

24

Massimo Ancona and Walter Cazzola

B The Module Io Sys

The moduleIo Sys contains the definition of the basic typeIo_Word describing each
word of the working storage as implemented by the RTS interpreter (Ioi) of Io. The
typeIo Word has the following definition, exported by the system level moduleIo_Sys.
Note thatIo does not support variant parts of a record, only the system typeIo Word
has this property and it is implemented in a special way.

TYPE

Io_Word = RECORD

CASE (ints, reals, bools, chars) OF

ints: (i: INTEGER)

\ reals: (r: REAL)

\ bools: (b: BOOLEAN)

\ chars: (c: CHAR)

FO

END;

C The Module Io Env

The moduleIo Env exports the definition of all basic low-level reflective RRTE data
structures implemented by theIoi interpreter (includingIo Word inherited fromIo -
Sys). The structure ofIo Env is the following:

MODULE Io_Env(Io_Sys_);

(* This program maps all the low-level data structures of the Io *)

(* interpreter implementing the reflective tower to the importing *)

(* reflective components. Names are filled of underline chars for *)

(* minimizing name clashing. Io_Env inherits Io_Word from Io_Sys *)

OF Io_Sys USE Io_Word;

GLOBAL Io_Word, alng_, tmax1_, cmax_, wksize_, alph_, sgtelem_, ordtyp_,

SgtTyp_, CodTyp_, TwrElem_, TwrTyp_, TWR_;

(* Compiler/Interpreter dependencies: alng_, tmax1_, cmax_, wksize, *)

(* maxf, lmax_ *)

CONST alng_=12; tmax1_=2001; cmax_=30000; wksize_=60000;

maxf_=6; lmax_=15; Layers_=2; (* number of reflective layers-1*)

TYPE alph_=ARRAY[1..alng_] OF CHAR;

sgtelem_=RECORD

nam_: alph_; mdl_, nxt_, knd_, typ_, xtp_: INTEGER;

ref_, nrm_, lev_, adr_, xrf_, rsz_, sts_, rel_: INTEGER;

END;

ordtyp_=RECORD

f, x, y: INTEGER

END;

SgtTyp_ = ARRAY[0..tmax1_] OF sgtelem_;

CodTyp_ = ARRAY[0..cmax_] OF ordtyp_;

(*Mirrored Comp. Domain *)

TwrElem_ = RECORD (* one element of the reflective tower *)

sgt_: SgtTyp_; (* symbol table = semantic Env.*)

25

Massimo Ancona and Walter Cazzola

code_: CodTyp_; (* executable instructions*)

tt_, t00_, csiz_, t_, b_, hb_: INTEGER;

curf_1:INTEGER;

ir_:ordtyp_; (*instruction buffer*)

pc_, ps_ :INTEGER; (* pgm counter & status regs*)

lncnt_, ocnt_, blkcnt_, chrcnt_ :INTEGER;

dspy_:ARRAY[0..lmax_] OF INTEGER; (*display *)

dfnam_, dfext_:ARRAY[0..maxf_] OF alph_; (* Iostreams*)

fld_:ARRAY[1..8] OF INTEGER;(* Iostreams*)

ws_: ARRAY[1..wksize_] OF Io_Word;(*workstore=semantic store*)

END;

TwrTyp_ = ARRAY[0..Layers_] OF TwrElem_; (* the reflective tower type *)

(* the interpreter sets dspy_[0]:=sgtbase[rlev+1] *)

VAR TWR_: TwrTyp_; (* the virtual reflective tower *)

BEGIN

END.

A detailed description of the data structures ofIo Sys andIo Env can be found in the
IoVM virtual machine report.

D Syntax

The following EBNF specification collects all syntactic rules presented in the report5.

Module = MODULE Ident["("Pragma{","Pragma}")"] ";"

[UseList] [GlobList] DeclSeq

BEGIN [StatementSequence] END [Ident]".".

UseList = QualUseList | UnqualUseList.

UnqualUseList = OF Ident USE Use { "," Use } ";".

QualUseList = USE Use { "," Use } ";".

Use = Ident [AS Ident].

GlobList = GLOBAL Ident { "," Ident} ";".

Pragma = Io_Sys_ | TABLES ...

DeclSeq = {CONST {ConstDecl";"}| TYPE {TypeDecl";"}| VAR {VarDecl";"}|

{SubProgDecl";"}.

ConstDecl = IdentDef "=" ConstExpr.

TypeDecl = IdentDef "=" Type.

Type = ArrayType | RecordType | PointerType | SetType | SubprogType.

ArrayType = ARRAY "[" Index { "," Index }"]" OF Type.

Index = OrdinalConstant ".." OrdinalConstant.

SetType = "SET OF" OrdinalType.

OrdinalType = INTEGER | CHAR.

RecordType = RECORD

FieldListSequence

END.

FieldListSequence = FieldList { ";" FieldList }.

5Same syntactic names could have been abbreviated.

26

Massimo Ancona and Walter Cazzola

FieldList = [IdentList ":" Type].

IdentList = IdentDef { "," IdentDef }.

PointerType = ^ Type.

SubprogType = FunctionType | ProcedureType.

FunctionType = FUNCTION "(" [FormalParameters] ")" ":" FormalType.

ProcedureType = PROCEDURE ["(" FormalParameters ")"].

FormalParameters = FPSection { ";" FPSection }].

FPSection = [VAR] ident { "," ident } ":" FormalType.

FormalType = QualIdent.

VarDecl = IdentList ":" Type.

SubProgDecl = FullDeclaration | ForwardDeclaration |

ForwardCompletion.

FullDeclaration = SubprogramHeading ";" SubprogramBody [Ident].

SubprogramHeading = ProcedureHeading | FunctionHeading.

ProcedureHeading = NamedProcheading | AnonymousProcHeading.

NamedProcheading = PROCEDURE IdentDef: ProcedureType.

AnonymousProcHeading = PROCEDURE IdentDef FormalParameters.

FunctionHeading = NamedFuncHeading | AnonymousFuncHeading.

NamedFuncHeading = FUNCTION IdentDef: FunctionType.

AnonymousFuncHeading = FUNCTION IdentDef FormalParameters ":" Resultype.

SubprogBody = DeclSeq CompoundStat.

CompoundStat = "BEGIN" StatementSequence "END".

StatementSequence = Statement { ";" Statement }.

Statement = [Assignment | ProcedureCall | IfStatement |

CaseStatement | WhileStatement | DoUntilStatement |

ForStatement | DoLoopStatement | WithStatement |

EXIT | CYCLE | RETURN [Expression]].

Assignment = Designator ":=" Expression.

ProcedureCall = Designator [ActualParameters].

IfStatement = IF Expression THEN StatementSequence

{ ELSIF expression THEN StatementSequence }

[ELSE StatementSequence] FI.

CaseStatement = CASE Expression OF Case { "\" Case }

[ELSE StatementSequence] FO.

Case = [CaseLabelList ":" StatementSequence].

CaseLabelList = CaseLabels { "," CaseLabels }.

CaseLabels = ConstExpression [".." ConstExpression].

WhileStatement = WHILE Expression DO StatementSequence OD.

DoUntilStatement = DO StatementSequence UNTIL Expression.

ForStatement = FOR Ident ":=" Expression (TO|DOWNTO) Expression

DO StatementSequence OD.

LoopStatement = DO StatementSequence OD.

Designator = QualIdent { "." Ident | "[" ExpressionList "]" |

"(" QualIdent ")" | "^" }.

QualIdent = [Ident "."] Ident.

ExpressionList = Expression { "," Expression }.

Expression = SimpleExpression [Relation SimpleExpression].

Relation = "=" | "<>" | "<" | "<=" | ">" | ">=" | IN.

SimpleExpression = ["+" | "-"] Term { AddOperator Term }.

AddOperator = "+" | "-" | OR.

27

Massimo Ancona and Walter Cazzola

Term = Factor { MulOperator Factor }.

MulOperator = "*" | "/" | DIV | MOD | AND

Factor = Number | CharConstant | String | NIL | Set |

Designator [ActualParameters] | "(" Expression ")" | NOT Factor.

Set = "[" [Element { "," Element }] "]".

Element = OrdinalConstant [".." OrdinalConstant].

OrdinalConstant= Char | Integer.

ActualParameters = ["(" [ExpressionList] ")"].

Ident = IdChar { IdChar | Digit }.

IdChar = Letter | "_".

Number = Integer | Real.

Integer = Digit { Digit } | Digit { HexDigit } "H".

Real = Digit { Digit } "." { Digit } [ScaleFactor].

ScaleFactor = "E" ["+" | "-"] Digit { Digit }.

HexDigit = Digit | "A" | "B" | "C" | "D" | "E" | "F".

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

CharConstant = "’" Char "’" | Digit { HexDigit } "X".

String = ’ { CharN | "’’" } ’.

Char = CharN | "’".

28

	Introduction
	Syntax
	Lexical Tokens
	Identifiers
	Reserved Identifier (or Keywords)

	Numbers
	Character Literals
	String Literal
	Set Literal
	Special Symbols
	Comments

	Scope and Declarations
	Constant Declarations
	Types and Type Declarations
	Basic Types
	Array Types
	Alpha Strings

	Set Types
	Record Types
	Pointer Types
	Subprogram (Procedure/Function) Types

	Variable Declarations
	Statements
	Assignments
	Subprograms Activation
	Statement Sequences
	If Statements
	Case Statements
	While Statements
	Do-Until Statements
	For Statement
	Do-Loop Statements
	Return, Exit and Cycle Statements

	Subprograms
	Formal Parameters
	Predefined Subprograms

	Input/Output
	Modules
	Module Inheritance and Interfaces

	Expressions
	Operands
	Syntax of Expressions and Operators
	Boolean Expressions
	Set Expressions
	Arithmetic Expressions
	Relations

	Reflective Programming
	The Module Io_Sys
	The Module Io_Env
	Syntax

