
Shifting up Java RMI from P2P to Multi-Point

Walter Cazzola, Massimo Ancona,
Fabio Canepa, Massimo Mancini, and Vanja Siccardi

DISI, University of Genova, Italy
{cazzola|ancona}@disi.unige.it

Abstract

In this paper we describe how to realize aJava RMI framework sup-
porting multi-point method invocation. The package we have realized al-
lows programmers to build groups of servers that could provide services in
two different modes: fault tolerant and parallel. These modes differ over
computations failure. Our extension is based upon the creation of entities
which maintain a common state between different servers. This has been
done extending the existingRMI registry. From the user’s point of view
the multi-point RMI acts just like the traditional RMI system, and really the
same architecture has been used.

1 Introduction

TheJava framework already supports point-to-point (P2P) communication through
the RMI mechanism. In the version shipped with thejdk, there is only the pos-
sibility for a peer-to-peer communication model. This does not fit well with the
needs emerging from a distributed system, i.e. higher resources availability sys-
tems. Within this background we developed an extension to the usual commu-
nication model which permits a multi-point communication model. Multi-point
communications help in dealing with many situations, e.g., servers failure toler-
ant, or data-parallel programming. However, multi-point communications among
a client and many servers can be interpreted as many P2P communication between
such a client and each of those servers. Results are collected into an array, which
is returned to the client. A multi-point communication model treats the server side
as a unique entity (like agroup).

2 RMI architecture

2.1 Java Distributed Object Model: Overview

The Java RMI framework permits to build distributed applications where com-
ponents communicate with each other by messages exchange. This is done coher-
ently with theJava programming framework. Communication details are handled
transparently by the framework exempting the software developer from directly
handling the access to the resources of the remote host. A distributed application
can be realized easily, keeping the focus only on the program logic and forgetting

1

Walter Cazzola, et al.

all the low-level details needed for establishing a remote communication between
two (or more) computers.

The RMI framework is composed of three layers of abstraction (see the figure
below), which cooperate for the realization of the remote communication. Each
layer is independent, and can be replaced without affecting the other layers.

client server

Remote Method Invocation System

Stub & Skeleton
Layer

Remote Reference
Layer

Remote Reference
Layer

Stub & Skeleton
Layer

Transport Layer

2.1.1 Stub& Skeleton Layer.

Thestub & skeleton layer represents the interface between the components of the
application and the rest of the RMI system. Fundamental components of the stub
& skeleton layer are thestubs. They work on the client side playing the role of
a proxy to the remote object implementation. Stubs are automatically created by
compiling the related remote service, and keep an internal representation of the
remote object. They handle remote method calls as defined by the remote interface
they implement.

Here in detail their tasks:

• to marshal input data, preparing them to be transmitted on the communica-
tion channel,

• to forward the call towards the remote server, which will carry out the re-
quested methods,

• to unmarshal the received data to the expected output format, and

• to return the result back to the client

The stub is aJava class generated by thermic preprocessor out of a remote
service implementation. The stub implements the same interface as the remote

2

Walter Cazzola, et al.

object, and acts on the client side. Injdk version 1.1 there is the need for a com-
plementary server side entity, calledskeleton. Basically, skeleton duties consist of
dispatching incoming requests from remote stubs to the appropriate remote objects
implementations, and of passing the results back to the stubs. Its presence in the
communication protocol used injdk version 1.2 is no more necessary because the
server side class hierarchy — e.g.,RemoteObject, UnicastRemoteObject, and
so on — used by the remote services are imbued with the same functionalities of
the skeletons.

2.1.2 Remote Reference Layer.

Theremote reference layer defines and implements the remote invocation semantic.
Objects defined in this layer realize the link with the implementation of the remote
service. In traditional RMI there is only the possibility for a P2P communication
between objects. As such, only one representation of the remote link is defined
and implemented: theUnicastRef class which defines the semantic of P2P com-
munication. To provide a P2P remote service, an object must simply extend the
UnicastRemoteObject class.

2.1.3 Transport Layer.

The transport layer links theJava Virtual Machines (JVM) involved in the dis-
tributed application each other. The communication between JVMs is done by
TCP/IP connections using a proprietary stream-based protocol calledJava Re-
mote Method Protocol (JRMP). Withjdk version 1.3, it is possible to use a new
version of the RMI library called RMI/IIOP which does not use JRMP protocol
but the standard protocol IIOP allowing the integration between CORBA and RMI
objects.

So far, we have talked of remote references, but we did not specify how to
get such items. Talking at a different abstraction level we can introduce here the
Registry, a name server maintaining associations between services names and
remote stubs. The registry is an entity which runs on any machine hosting one or
more remote services. Every service is locally bound to the registry. This is not
mandatory since the naming service is a straightforward and easy way to obtain a
remote service hook, but not the only way. We can pass remote services references
from an object to another by using methods, or whatever means the environment
supplies.

2.2 Interactions among RMI components in an hypothetic applica-
tion.

❶ Definition of the remote interface which clients and servers refer to

❷ Definition of the server-side implementation of the service

3

Walter Cazzola, et al.

❸ Generation of the stubs and skeletons by means of thermic preprocessor

❹ Creation of a server that implements the remote service. Exportation and
creation of the stub for the service

❺ Registration of the service in the local registry

❻ Lookup of a remote service. A client queries the registry for a particular
service, the registry supplies the corresponding stub to the client

❼ Remote method invocation. The client invokes the method. The stub sets
the connection with the remote server, carries out marshaling, request of the
execution of the method, unmarshaling of the answer and finally returns the
result to the client

3 Multi-Point RMI Overview

In the RMI system the P2P communication mechanism is suitable for modeling
client-server applications. Notwithstanding that, there are requirements which can-
not or are difficult to be achieved by this communication model — e.g., servers
reliability and availability.

The goal of our project consists of extending theJava system by putting be-
sides the P2P RMI a one-to-many communication mechanism. In this communi-
cation model, a service request is forwarded to several similar severs supplying
that service. In our architecture a group of objects supplying the same service is
defined and is accessible by a common tag. Every node in the network involved in
the group knows all the required data for a distributed interrogation, so they are not
centralized. Changes in the group are dynamically spread over the network.

3.1 Multi-Point RMI architecture

The multi-point RMI system, we have implemented, uses the same architecture as
the traditional RMI. Hence, we continue to have the remote reference, the stub&
skeleton, and the transport layers. A new layer, calledgroup layer, has been put
besides the remote reference, and the stub& skeleton layers.

3.1.1 Remote Reference Layer.

The remote reference layer has been extended to deal with the new remote invo-
cation semantic. The new multi-point type for a service reference has been imple-
mented by theMulticastRef class. Each instance of this class represents a group,
i.e., a reference to a list of servers belonging to such a group.

4

Walter Cazzola, et al.

3.1.2 Group Layer.

A group is a composite entity whose components are objects providing the same
services. Each object joins to the group through specific primitives. Information
about the group are kept and continuously updated by each registry in the system.
Registries use some synchronization primitives to notify each other changes oc-
curred to the group (for example, a member has stopped its services, a new member
has joined in, and so on).

The result of a service provided by a group is the collection of the results that
each member of the group provides for that service. Hence, the group interface and
the interfaces of its members have the same declared service but they differ in the
return values.

Thus, the interface describing the service provided by a member of the group
will look like:�

public interface RemoteInterfaceextendsRemote{
typename1 methodname1() throws RemoteException;

}� �

Whereas the group interface describing the services provided by the group will

look like:�
public interface RemoteInterfaceGroupextendsRemote{

typename1 [] methodname1() throws RemoteException;
}� �

3.1.3 Stub& Skeleton Layer.

The stub& skeleton layers has been modified in order to handle the group inter-
face. Whereas, the traditional scheme is characterized by the matching of the two
interfaces, the multi-point scheme is not. At the stub& skeleton layer one has to
deal with this, being the stub the meeting point between the two interfaces. Luckily
for us, the only difference is represented by the return value. Thermic preproces-
sor is in charge of generating these extra stubs. Hence, to support the group our
coding also affects this component.

3.1.4 Transport Layer.

The transport layer has not been modified.

3.2 The Multi-RMI API

In this section, we show, on snippets of code, the API to handle group creation and
multi-point interactions. We have extracted the snippets from the banking system
described in section5.

5

Walter Cazzola, et al.

3.2.1 Definition of Server Side Interface.

Description of the services provided by remote servers.�
public interface AccountextendsRemote{

// This method returns the current balance of the account

Integer balance ()throws RemoteException;
}� �

An interface like this has to be implemented by each object which wants to

provide remote services.

3.2.2 Definition of the Group Interface.

Services provided by a group have to be described by an aggregative interface,
which reassembles the interfaces implemented by each object belonging to that
group.�

public interface AccountGroupextendsRemote{
// This method returns all the balance of the remote servers belonging to the group

Integer [] balance ()throws RemoteException;
}� �

3.2.3 Server Definition& Creation.

Each object which will be part of a group has to extends theMulticastRemoteOb-
ject (as shown in the following snippet of code). At this point, only information
about the server which has created the stub are kept at the remote reference.�

public class Bank1

extendsMulticastRemoteObject
implementsAccount{

[...]
}� �

Remote servers are created in the usual way.�

Bank1 bank =newBank1();� �

3.2.4 Group Creation.

The group is registered in the local registry of the server with the association�ne-
wGroupName, Stub� through a call to thecreateNewGroup method.

6

Walter Cazzola, et al.

�
java .rmi.MulticastNaming.createNewGroup("rmi://"+host+"/Bank", bank);� �

Wherehost represents the host of the server which creates the group, and

rmi://host/Bank is the URL where the first reference of the group is located.
Hence, a group creation takes two steps:

���������
	���
������������
� ���������
	������������������������
�

���� �!#"$ �%& �')()��*#+-,

.0/�132546/-7&8�259;:

< /�8�=>/�8

?�9;@$46A$BDC < 46.0/FE�A < 468�G ?�9;@$46A$BDC < 46.0/FE�A < 468�G

?�9;@$46A$BDC < 46.0/�132546/-HJI�K

< /�8�=>/�8

Figure 1:How a group is created.

❶ a server asks the multicast registry for the creation of a new group (Fig.1.a),
then

❷ the new group is registered in the multicast registry as a group composed
only of the server originating it (Fig.1.b).

3.2.5 Look up of a Group Service.

Clients get a representative of the group through a call to theMulticastNam-
ing.lookup method. Through this representative the client accesses to the group
services.�

public class Client {
static AccountGroup bank;

public static void main(String [] args){
[...]

bank = (AccountGroup) MulticastNaming.lookup("rmi://"+server+"/Bank");
[...]

}
}� �

7

rmi://host/Bank

Walter Cazzola, et al.

stub

Client

grop
reference

RemoteObj RemoteObj

RemoteObj RemoteObj

. . .

. . .
group communication

RemoteGroup

Figure 2:How a request to a group takes place.

The representative, that the client gets, is directly bound to the server that has
registered the group.

3.2.6 Requesting a Service Provided by a Group.

Getting a service from a group is carried out through the group representative sim-
ilarly to a P2P remote invocation.�

public class Client {
static AccountGroup bank;

public static void main(String[] args){
[...]

Integer[] balances = bank.balance();// asking the state of accounts

}
}� �

Figure 2 reassembles how the remote method invocation takes place. The stub
dispatches the calls using its reference layer. The group reference (layer) forwards
the request to the members of the group, collects the results and returns them to the
client in form of an array as specified by the group interface. If a failure happens,
the behavior depends on the semantic adopted for that multi-point communication
(see section4.1).

8

Walter Cazzola, et al.

����������	�

�����������
���������

����������	�

�������������������

� �"!$#&%

����������	�

�����������
���������

����������	�

�������������������

� �"!$#&'

����������	�

�����������
���������

����������	�

�������������������

� �"!$#&(

������)*���+
 ������)*���+� ������)*���+,

-/.103254$.16871259;:���
��<

������)*���+=

���
��<><��
��� ?@��	A

�����
<

Figure 3:The remote serverX asks to join a group.

3.2.7 Join to or Disjoin from a Group.

Servers ask to a registry to join to (or to disjoin from) a group using the method
join (or disjoin). Such a registry notifies the changes to all the other registries
hosting a member of the group. After the notification each registry updates its
databases.�

Bank bank =newBank();
java .rmi.MulticastNaming. join ("rmi://"+remoteserver+"/Bank", bank);
java .rmi.MulticastNaming. disjoin ("rmi://"+remoteserver+"/Bank", bank);� �

Figure3 shows how a server joins to a group.

4 Multi-point RMI interfaces and classes

Here follows a general explanation of the classes that have been added or modified
in order to implement the multi-point RMI. Classes are described following the
order given in section3.

4.1 Remote Reference Layer

4.1.1 TheMulticastRemoteObject class.

TheMulticastRemoteObject class defines a composite remote object whose ref-
erences are valid only while the server process is alive. TheMulticastRemoteOb-
ject class supports the multicast active object references (invocations, parameters,
and results) using TCP streams. There are two kinds of behavior supplied by the
MulticastRemoteObject:

9

Walter Cazzola, et al.

• parallel, which implements the semantic of a parallel process execution.

• fault tolerant, which implements a fault tolerant behavior.

Operations carried out inparallel mode fail and throw an exception when one
or more members of the group are down. Whereas operations carried out infault -
tolerant mode when no server in the group can give an answer.

If the mode is not specified calling the constructor of the remote servers, the
default behavior is set toparallel. Objects that should be part of a group have to
extend theMulticastRemoteObject class. If the object does not extendMulti-
castRemoteObject and notwithstanding that, it would be part of a group, then,
it has to provide by itself the correct semantics of the hashCode,equals, and
toString methods inherited from theObject class, so that they behave appropri-
ately for remote objects and group of remote objects.

The main method of this class is:�
RemoteStub exportObject(Remote obj)� �

which exports the remote object passed as argument. To render it available to
receive the incoming calls, using an anonymous port, it builds and returns aRe-
moteStub using the methodexportObject of the classMulticastServerRef.

4.1.2 TheMulticastServerRef class.

MulticastServerRef implements the server side part of the remote reference
layer for remote objects exported with theMulticastRef reference type. This
class has only the attributemodewhich specifies the behavior realized by the group:
parallel or fault tolerance. Whenmode is not specified, this attribute is set topar-
allel as a default. In order to allow remote access to the object, the methodex-
portObject builds the remote stub for the class starting from theMulticastRef
class ifmode is set toparallel and from theMulticastRefFaultTolerance class
if mode is set tofault tolerance.

4.1.3 TheMulticastRef class.

MulticastRef implements the multicast client-side group remote reference, with
the parallel semantic. The class contains the list of server references composing
the group. The list is stored in the attributeref.

invoke is the main method of the class. Its behavior consists in executing
the remote method call on every server in the group. Its return value is an array
containing the results of each remote method invocation. ARemoteException is
thrown if at least one of the calls fails. If the remote invocation throws an excep-
tion, then an application-level exception is also thrown. To marshal the data for the
communication channel, the serialization mechanism has been extended overrid-
ing methodswriteExternal andreadExternal. The MethodwriteExternal

10

Walter Cazzola, et al.

serializes the object group on the stream. At beginning, it serializes the number of
servers belonging to the group (size of the group); then all the remote references.
The methodreadExternal deserializes the object from the stream. It reads the
number of remote references belonging to the group then reads all the remote ref-
erences.

4.1.4 TheMulticastRefFaultTolerance class.

MulticastRefFaultTolerance implements the multicast client-side group re-
mote reference with thefault-tolerant semantic.

This class extendsMulticastRef overriding the methodinvoke. The return
value is again the array containing the results of each method invocation. The
difference with the parent class lies in the exception mechanism.MulticastRe-
fFaultTolerance throws an exception, namely aZombieGroupRemoteExcep-
tion, if all the calls failor an application-level exception if the remote invocation
throws an exception.

4.1.5 TheUnicastServerRef class.

This class is identical to the P2P version, but for scoping troubles some fields and
methods have been defined asprotected instead ofprivate.

4.2 Group Layer.

4.2.1 TheMulticastNaming class.

TheMulticastNaming class — analogously to the P2PNaming class — provides
methods for storing and retrieving references to remote objects in the remote reg-
istry.

Binding a name to a remote object means associating a name for it. Such a
name will be used to look up the object. A remote object can be associated with
a name usingbind or rebind methods of theMulticastNaming class. When
the exported object is aUnicastRemoteObject, the name represents simply its
service label. When the exported object is aMulticastRemoteObject, the name
represents the group service label.

Once a remote object is registered with the RMI registry on the local host,
callers from a remote host can look up the object by name (using thelookup
method), get its reference, and then invoke its methods. If the object represents
a group, its methods will return an array of values, containing the result of the
method invocation on each server. A registry can be shared by servers running on a
host or an individual server process may create and use its own registry if desired.
Methods of this class use services supplied from the registry defined in theMul-
ticastRegistry interface and implemented in theMulticastRegistryImpl
class. New methods have been added for dealing with groups:createNewGroup,
join and disjoin methods. Moreover, theMulticastNaming class provides

11

Walter Cazzola, et al.

methods to access a remote object registry using URL-formatted names to specify
in a compact format both the remote registry and the name for a remote object.

4.2.2 TheMulticastRegistry interface.

Our framework comes with a simple remote object registry interface,Multicas-
tRegistry, which provides methods for storing and retrieving remote object and
group references.

This interface contains the methods defined byUnicastRegistry and some
other methods needed to obtain the multicast behavior. Typically a registry exists
on every node running remote servers. Every server belonging to a multicast group
mustregister to a multicast registry. A multicast registry is also unicast compliant,
in the sense that it can handle P2P calls as well.

A registry on a particular node contains a database that maps group names to
the object belonging to the group. Initially, the database of a registry is empty.
A server stores its services in the registry prefixing (but it is not mandatory) their
name with the package name to reduce name collisions.

To create a multicast registry, the programmer can use theLocateMulticas-
tRegistry.createRegistry method call. Instead to get a reference to a remote
object registry, the programmer can use theLocateMulticastRegistry.getRegistry
method call.

Methodslookup andbind are defined to carry out thelookup, join, and
disjoin operations defined in theMulticastNaming class.

When a server is joined (or disjoined) to a group all the registries keeping
entries for the group need to be informed of the change. This is accomplished by
the methodupdate.

4.2.3 TheLocateMulticastRegistry class.

LocateMulticastRegistry is used to get a reference to a registry on a particular
host (methodgetRegistry), or to create a registry that accepts calls on a specific
port (methodcreateRegistry). The registry is a simpleUnicastRemoteOb-
ject: the difference between the standardLocateRegistry is that this registry
loads the classMulticastRegistryImpl and not the classRegistryImpl.

4.3 Stub& Skeleton Layer

No modifications have been done to the standard classes of the stub& skeleton
layer. The Remote reference inside the stub is aRemoteRef object as in theclas-
sic RMI framework. At run-time, its subclassMulticastRef is used. The only
modifications we needed to do are related to thermic preprocessor, which must
generate stubs having arrays as return values of group services. To do that, we have
modified some parts of theGenerator class.

12

Walter Cazzola, et al.

4.3.1 TheGenerator class.

A Generator object generates theJava source code of the stub class for a remote
server, parsing its source code. We have modified the generator to enable it to deal
with multi-point RMI generating the appropriate stubs.

We have introduced the attributeisMulticast to distinguish when to generate
aclassicstub instead of amulti-pointone. Its value is internally handled in order to
spare the user to set it manually. Basically, for each remote interfaceX the compiler
look for a parent interfaceX group in the current path. If found, we are in the case
of a group interface and the attributeisMulticast is set. If not, we continue in
the normal way.

Another issue we had to tackle was the generation of the hash key indexing
remote method invocations. The hash key changes with the method prototype. We
changed the method prototype (because of the return value) so we had to reflect
this change in the hash key generation as well.

5 Multi-Point RMI at Work.

As an example of using the multi-point RMI library, an application which models a
simple banking system has been implemented. A bank supplies some services like
money withdrawal and deposit on a bank account. Due to the intrinsic necessity
of these operations to be reliable we have chosen to replicate the bank server. In
particular this application shows an example ofsoftware fault tolerance. The repli-
cated bank objects implement the same services, but with different code in order
to spare clients from logical errors. Each version of the bank returns its balance
for the involved account, and the client will receive, as correct balance, the most
frequent value (i.e., by voting).

The remote object interface representing the bank is:�
public interface AccountextendsRemote{

// returns the balance of the account

Integer balance ()throws RemoteException;
// withdraws�sum� from the account

Boolean withdraw(int sum)throws RemoteException;
// deposits�sum� in the account

void deposit (int sum)throws RemoteException;
}� �

This interface describes the methods provided by all the versions of theBank.

As explained in section3.2, to use the multi-point RMI facility we need both a
server interface and a group interface.�

public interface AccountGroupextendsRemote{
// gathers and returns all the pretended balance of the account

Integer [] balance ()throws RemoteException;

13

Walter Cazzola, et al.

// withdraws�sum� from all the copies of the account

Boolean [] withdraw(int sum)throws RemoteException;
// deposits�sum� in all the copies of the account

void deposit (int sum)throws RemoteException;
}� �

The interfaceAccount Group defines the same methods defined in theAc-

count interface; the only difference is in the return values, that are arrays of the
original type — e.g., Integer[] instead of Integer — containing the results of the
computation of each server.

The following class represents the bank.�
// this class realizes a bank , the balance of an account is calculated as the difference

// between the deposits and the withdraws.

public class Bank1 extendsMulticastRemoteObjectimplementsAccount{
private int depositSum; // total deposited amounts

private int withdrawSum; // total withdrawn amounts

// the constructor does not specify whether the object is or not fault tolerant ,

// so it is used with the default semantic :�parallel�.

public Bank1() throws RemoteException{ super(); }

// it returns the current balance of the account , calculated as:

// �depositSum−withdrawSum�.

public Integer balance ()throws RemoteException{
return (new Integer (depositSum− withdrawSum));

}

// it withdraws�sum� euros from the account and updates the�withdrawSum� attribute.

// it returns true if the current balance covers the requested withdraw.

public Boolean withdraw(int sum)throws RemoteException{
if ((this . balance (). intValue ()− sum)> 0) {

withdrawSum += sum;
return new Boolean(true);

} else return newBoolean(false);
}

// it deposits�sum� euros in the account and update the�depositSum� attribute.

public void deposit (int sum)throws RemoteException{ depositSum += sum;}

public static void main(String [] args){
String server = args [0];
System.setSecurityManager(newRMISecurityManager());
try {

Bank1 bank =newBank1();
java .rmi.MulticastNaming.createNewGroup("rmi://"+server+"/Bank", bank);

} catch (Exception e) {

14

Walter Cazzola, et al.

System.out . println ("Bank1 error: " + e.getMessage());
e. printStackTrace ();
}

}
}� �

The classBank1 implements the normal behavior of a bank.Bank2, andBank3
extendBank1 giving an alternative implementation of its methods. We do not show
them, because their code do not add information to the exposition.

The following code shows how a client accesses to the bank services. The client
executes some deposits to and withdrawals from its account (lines32, and33),
then it checks his statement of account invoking the methodbalance (line 35).
TheBankClient code also contains asoftware failure detectionmechanism (the
methodfindRightResult defined at line8) which chooses the most common
returned value from methodbalance.�

/∗ simple interactions with the banking system∗/
public class BankClient{

3 // �bank� is the reference used to refer to the remote multicast object

// that implements the�Bank Group� interface.

static AccountGroup bank;
6

/∗ it returns the most common value in�res� ∗/
private static Integer findRightResult (Integer [] res){

9 Hashtable resCount =newHashtable ();
int mostCommon = 0;

12 for (int i = 0; i < res . length ; i++){
Integer val ;
if ((val = (Integer) resCount. get (res [i])) ==null)

15 resCount.put(res [i],new Integer (1));
else resCount.put(res [i],new Integer (val . intValue () + 1));
if (resCont . get (res [mostCommon])< resCont.get(res[i])) mostCommon = i;

18 }
return res [mostCommon];

}
21

// This method interacts with a remote multicast object of group�Bank�.

// It carries out some deposits and some withdrawals , then it asks the

24 // statement of account . The right value is determined by majority .

public static void main(String [] args){
System.setSecurityManager(newRMISecurityManager());

27 String server = args [0];
try {

/∗ looks up the multicast remote object representing a bank∗/
30 bank = (AccountGroup) MulticastNaming.lookup("rmi://"+args[0]+"Bank");

/∗ it carries out some transactions∗/

15

Walter Cazzola, et al.

for (int i = 0; i < 10; i++) bank. deposit (i∗ 10);
33 for (int i = 0; i < 5; i++) bank.withdraw(i ∗ 2);

/∗ ask for the statement of account∗/
Integer [] balances = bank.balance ();

36 /∗ it determines which is the right statement of account∗/
System.out . println ("The statement of account is "+\

+ findRightResult (balances)+" euros.");
39 } catch (Exception e){

System.out . println ("BankClient connection error" + e.getMessage());
e. printStackTrace ();

42 }
}

}� �

6 Conclusion

From some naive tests we have discovered that our multi-point RMI mechanism
carries out a remote request to a group of ten servers saving the 4% of time with
respect to use ten P2P RMI. Our system is available athttp://www.disi.unige.
it/person/CazzolaW/sw/multi-rmi.tar.gz.

16

http://www.disi.unige.it/person/CazzolaW/sw/multi-rmi.tar.gz
http://www.disi.unige.it/person/CazzolaW/sw/multi-rmi.tar.gz

	Introduction
	RMI architecture
	Java Distributed Object Model: Overview
	Stub & Skeleton Layer.
	Remote Reference Layer.
	Transport Layer.

	Interactions among RMI components in an hypothetic application.

	Multi-Point RMI Overview
	Multi-Point RMI architecture
	Remote Reference Layer.
	Group Layer.
	Stub & Skeleton Layer.
	Transport Layer.

	The Multi-RMI API
	Definition of Server Side Interface.
	Definition of the Group Interface.
	Server Definition & Creation.
	Group Creation.
	Look up of a Group Service.
	Requesting a Service Provided by a Group.
	Join to or Disjoin from a Group.

	Multi-point RMI interfaces and classes
	Remote Reference Layer
	The MulticastRemoteObject class.
	The MulticastServerRef class.
	The MulticastRef class.
	The MulticastRefFaultTolerance class.
	The UnicastServerRef class.

	Group Layer.
	The MulticastNaming class.
	The MulticastRegistry interface.
	The LocateMulticastRegistry class.

	Stub & Skeleton Layer
	The Generator class.

	Multi-Point RMI at Work.
	Conclusion

