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Abstract. The classical remote method invocation (RMI)
mechanism adopted by several object-based middleware is
‘black-box’ in nature, and the RMI functionality, i.e., the RMI
interaction policy and its configuration, is hard-coded into the
application. This RMI nature hinders software development
and reuse, forcing the programmer to focus on communica-
tion details often marginal to the application being developed.
Extending the RMI behavior with extra functionality is also
a very difficult job, because added code must be scattered
among the entities involved in communications.

This situation could be improved by developing the sys-
tem in several separate layers, confining communications and
related matters to specific layers. As demonstrated by recent
work on reflective middleware, reflection represents a pow-
erful tool for realizing such a separation and therefore over-
coming the problems referred to above. Such an approach im-
proves the separation of concerns between the communica-
tion-related algorithms and the functional aspects of an appli-
cation. However, communications and all related concerns are
not managed as a single unit that is separate from the rest of
the application, which makes their reuse, extension, and man-
agement difficult. As a consequence, communications con-
cerns continue to be scattered across the meta-program, com-
munication mechanisms continue to be black-box in nature,
and there is only limited opportunity to adjust communication
policies through configuration interfaces.

In this paper we examine the issues raised above, and pro-
pose a reflective approach specially designed to open up the
Java RMI mechanism. Our proposal consists of a new reflec-
tive model, called multi-channel reification, that reflects on
and reifies communication channels, i.e., it renders commu-
nication channels first-class citizens. This model is designed
both for developing new communication mechanisms and for
extending the behavior of communication mechanisms pro-
vided by the underlying system. Our approach is embodied
in a framework called mChaRM, which is described in detail
in this paper.
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1 Introduction

The term middleware refers to a set of services that resides
between the application and the operating system and aims
to facilitate the development, deployment, and management
of distributed applications [15]. The main objective of dis-
tributed middleware is to provide a convenient environment
for the realization of distributed computations. Unfortunately,
in many middleware platforms, interaction policies between
the distributed objects are hard-coded into the platform itself.
Some platforms, e.g., CORBA [39], provide mechanisms,
such as interceptors and POA/Servant Manager, for redefin-
ing interaction details, but these allow for customization only
within the scope envisaged by their designers. Full adaptabil-
ity has not been achieved yet.

Another problem occurs because the monolithic nature of
middleware forces distributed algorithms to be implemented
at the application level. This results in an intertwining of dis-
tributed algorithm code with application code, and does not
achieve separation of concerns [25] between functional and
nonfunctional code. Some programming languages, e.g., Ja-
va [5], disguise remote interactions as local calls, thus ren-
dering their presence transparent to the programmer. How-
ever their management (i.e., tuning and synchronizing the in-
volved objects) is not so transparent and easily maskable to
the programmer. Moreover, distributed algorithms are scat-
tered among several objects, and the complexity of these al-
gorithms is augmented by introducing nonfunctional code for
coordinating the work of the involved objects and accessing
remote data. We can summarize these kinds of problems with
current middleware platforms as follows:

❶ interaction policies are hidden from the programmer, who
cannot customize them (lack of adaptability);

❷ communication, synchronization, and tuning code is in-
tertwined with application code (lack of separation of
concerns);
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❸ algorithms are scattered among several objects, thus forc-
ing the programmer to explicitly coordinate their work
(lack of global view).

Global view, adaptability, and separation of concerns are re-
quirements that current middleware do not completely ad-
dress and support. To address such open issues, classic mid-
dleware has been enhanced with concepts from computa-
tional reflection to create reflective middleware [7, 15].

The rest of this paper is organized as follows. Section 2
describes the reflective middleware approach and why it fails
to deal with these open issues. Section 3 relates our commu-
nication-oriented reflective model, called the multi-channel
reification model. Sections 4 and 5 are devoted to showing
the applicability of our solution and describing the mChaRM
framework based on our model, which opens up the Java
RMI mechanism and its implementation. In Sect. 6, we also
show a few non-trivial applications using the proposed ap-
proach. The final three sections draw conclusions and present
some related and future work.

2 Reflective middleware

2.1 Computational reflection

Computational reflection (or reflection for short) is defined
as the activity performed by an agent when doing compu-
tations about itself [32]. This activity involves two aspects:
introspection and intercession. Bobrow et al. [8] define these
two terms as follows:

Introspection is the ability of a program to observe
and therefore reason about its own state. Intercession
is the ability for a program to modify its own execution
state, or alter its own interpretation or meaning.

Reflection applies quite naturally to the object-oriented par-
adigm [17, 19, 32]. Just as objects in the conventional ob-
ject-oriented paradigm are representations of real world en-
tities, objects can themselves be represented by other ob-
jects, usually referred to as meta-objects. Computation done
by meta-objects (meta-computation) is for the purpose of ob-
serving and modifying the objects they represent, called ref-
erents. Meta-computation is often performed by meta-objects
by trapping the normal computation of their referents. In
other words, an action of the referent is trapped by the meta-
object, which performs a meta-computation either replacing
or encapsulating the referent’s action. Of course, meta-ob-
jects themselves can be manipulated by meta-meta-objects,
and so on. Thus, a reflective system can be structured in mul-
tiple levels, constituting a reflective tower. Base-level objects
(termed base-objects) perform computations on the entities
of the application domain. Objects in the other levels (termed
meta-levels) perform computations on the objects residing in
the lower levels. The interface between adjacent levels in
the reflective tower is usually termed meta-object protocol
(MOP) [27].

Reification is an essential capability of all reflective mod-
els. Each level of the reflective tower maintains a set of data
structures representing (reifying) lower level computation. Of
course, which aspects are reified depends on the reflective
model (e.g., structure, state and behavior, communication). In

any case, the data structures comprising a reification must be
causally connected to the aspect(s) of the system being rei-
fied. All changes to the reification are reflected in the system,
and vice versa. Depending on the reflective model, the causal
connection may operate at compile-, load-, or run-time, but in
all cases the meta-object programmer is not concerned about
how the causal connection is achieved.

Transparency [41] is another key feature of all reflective
models. In the context of reflection, transparency refers to the
fact that the objects in each level are completely unaware
of the presence and workings of objects in higher levels. In
other words, each meta-level is added to the base-level with-
out modifying the referent level itself. An important appli-
cation of transparency is in the separation of functional fea-
tures from (possibly several distinct) nonfunctional features.
In a typical approach, objects at the base-level are entrusted
to meet an application’s functional requirements, while those
at the meta-level add nonfunctional properties (e.g., fault tol-
erance, persistence, distribution, and so on). Software sys-
tems can benefit from such an approach for several reasons
(e.g., easy adaptability, separation of concerns, and code sta-
bility). Of course, separation of concerns enhances the sys-
tem’s modifiability. Depending on whether a required mod-
ification to the system involves functional or nonfunctional
properties, functional objects alone or nonfunctional objects
alone may be modified.

2.2 The reflective middleware approach

A reflective approach, as stated in [9], can be considered as
the glue that sticks together distributed and object-based pro-
gramming and fills gaps in their integration. Reflection pro-
vides a programming environment that exposes the imple-
mentation details of a system, i.e., the interaction policies,
and allows the programmer to manipulate them. Moreover,
a reflective approach permits easy separation of interaction
management code from application code. Due to such con-
siderations many reflective middleware implementations have
been developed. Current research in reflective middleware is
focused on improving customizability and rendering its use
more transparent. However, most reflective middleware ap-
proaches leave two open issues:

❶ the system lacks a global view, and
❷ the independent customization of each individual remote

method invocation or message exchange1 is difficult.

The above problems, as stated by Kenneth Birman in his key-
note address at Middleware 2000, are very important from the
development point-of-view because their resolution would
lead to an increased reuse of communication-based features
and simpler implementations.

Global view. Writing object-based distributed applications in
which several separate entities manage shared information is
problematic. In such situations, an algorithm usually intended

1 In the rest of this paper, notwithstanding the term hides the re-
turn values intrinsic to the (remote) method invocation, we use the
term message to denote both the (remote) method invocation and the
exchange of data because this terminology adheres to the terminol-
ogy previously adopted in the reflection community [19].
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Fig. 1. Base- and meta-level communication graphs. In a the communication graph of the base-level is mimicked in the meta-level, whereas
in b it is reified in the meta-level

to be a sequential and coherent whole must be divided among
several distributed entities. Since no individual entity knows
the entire algorithm, the programmer must write additional
code to synchronize the distributed objects and to keep up-
dated and consistent the shared data. The meta-programmer2

must face similar problems when the application domain of
his meta-program is the communication among base-entities.
Hence, he must write some additional code to keep each rei-
fied aspect of the communication in touch with components
reifying other communication aspects. Such additional code
increases the complexity of the meta-level program and also
increases the chances of coding errors. Moreover, scattering
the algorithm among several objects contrasts with the ob-
ject-oriented philosophy, which states that data and the algo-
rithms managing them should be encapsulated into the same
entity. Since objects do not have a global view of the data
they manage, we can state that most current reflective mid-
dleware platforms lack a global view. The relevance of the
global view has been explored by Holland in [24]. He has
verified how the intrinsic global view property provided by
the contracts [23] helps in building reusable components.
Therefore, in the current reflective middleware the potential
for object reuse is compromised.3 Moreover, the implementa-
tion of many nonfunctional communication-oriented proper-
ties may benefit from achieving the global view property. For
example, each filter-driven communication (e.g., encrypted,
compressed, and so on) is implemented in a straightforward
manner without duplicating the filter and all the related data.
Analogously, the realization of nonfunctional features such as
load balancing and reliability, which are based on data owned
by the sender or the receiver (e.g., their status or load, ser-

2 By the term meta-programmer we mean the person who designs
and programs the program at the meta-level (meta-program).

3 According to [6], a component (in our case the realization of a
(non)functional feature) must be self-contained to be reusable. That
is, the services the component provides are mostly realized without
interacting with the other components, i.e., the component is loosely
coupled with the other components.

vice availability and so on), would not need to retrieve such
data because they are already encapsulated in the meta-entity
enriching the corresponding communication.

Customization of communications. Current reflective middle-
ware platforms only support changes to the mechanisms re-
sponsible for message transfer, neglecting the separate man-
agement of individual messages. To implement different
meta-behaviors (that is, the behavior of the meta-objects) for
a single message or for a group of messages, the meta-pro-
grammer must write a separate meta-program for each type
of incoming message and then ‘switch’ based on the mes-
sage type. Moreover, adapting a meta-object to deal with new
message patterns requires manually including code for the re-
lated handlers. Unfortunately, this increases the complexity
and size of the meta-program to the detriment of its readabil-
ity and maintainability.

2.3 Communications as application domain for reflection

In summary, the global view requirement is typically not a-
chieved and customizing each single communication is hard
to achieve. Fundamentally, this is due to the features of the
reflective models embedded in the current reflective mid-
dleware. Most reflective models are object-based or limited
to considering the single exchanged message instead of the
whole communication. That is, none of these reflective ap-
proaches considers communications as its application do-
main. In the rest of this section we examine these approaches,
explaining why they are not suitable for performing meta-
computations on communication.

Object-based reification. In these models (basically, derived
from the meta-object model [32]), each object (called a ref-
erent) is associated with a meta-object, which traps messages
sent to its referent and implements the behavior of the in-
vocation. Such models thus focus their efforts on managing
objects rather than interactions. They have been designed for
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handling different requirements (i.e., reflecting on various ba-
se-level objects). Hence they do not address communication-
oriented nonfunctional requirements. In particular, by adopt-
ing an object-based model to reflect on distributed commu-
nications, the meta-programmer often has to duplicate the
base-level communication graph explicitly at the meta-level
(see Fig. 1a). Implementing new features for base-level com-
munications requires that exchanged messages be trapped at
the source, sent to the meta-level, and managed and then dis-
patched to the meta-entity at the destination. In this manner,
the meta-level mimics the corresponding base-level commu-
nication. The problem with this approach is that the meta-pro-
grammer has to introduce synchronization and communica-
tion code into the meta-program, as well as into the base-level
program, increasing its complexity. Therefore, object-based
approaches to reflection-on-communication simply move the
problem, which reflection tries to remedy, of intertwined non-
functional/functional code [25] from the base- to the meta-
level. Simulating a base-level communication at the meta-
level, as advocated in [35], allows performing meta-compu-
tations related to either sending or receiving actions, but not
related to the whole communication or involving informa-
tion owned either by the sender or by the receiver without
continuously interacting with them. In addition, object-based
reification approaches directly inherit the problem of lack of
a global view from the object-oriented methodology [18],
which encapsulates computation orthogonally to communi-
cation.

Message reification. Problems related to reflect on communi-
cations have already been stressed in the literature [19, 33].
Most researchers agree that to overcome these problems one
must adopt a reflective model specially designed for deal-
ing with communications. Ferber [19] proposed the message
reification approach. This approach consists of reifying each
exchanged message in a meta-entity, as shown in Fig. 1b.
Messages are reified in the meta-level as long as they exist
in the base-level. Meta-entities reifying messages can easily
extend the semantics of the communication mechanism, but
they do not know senders and receivers of the reified commu-
nication. Therefore they cannot manipulate the communica-
tion aspects related to senders and receivers. Moreover, due to
the ephemeral nature of the message, the meta-program can
carry out meta-computations involving previously computed
information only if this information is stored between two
reifications. We term the phenomenon just described lack of
information continuity. Profiling and load balancing are ex-
amples of nonfunctional requirements that are difficult to im-
plement without information continuity.

Although the message reification model is more suitable
for enriching the semantics of communication than object-
based approaches, we still think that the message reification
approach is not well-suited for distributed computing. The
message reification model not only lacks information conti-
nuity, but also does not permit interaction with the object in-
volved in the communication, and is limited to point-to-point
communications. Thus, the realization of a reflective middle-
ware that completely supports communications as the appli-
cation domain for reflection requires further examination.

3 Communication channels as first-class citizens

To address the problems described in Sect. 2.2 we have to
design from scratch a reflective approach that reifies and re-
flects on communications directly. This means designing a
reflective model whose domain is not a base-object (as in the
meta-object model) or a message (as in the message reifica-
tion model), but rather an entire communication among base-
objects. That is, we need to encapsulate message exchanges
(not only messages) into a single logical meta-object instead
of scattering the relevant information related to it among sev-
eral meta-objects. Hence, communication channels must be
treated as first-class citizens.

To fulfill this purpose, we have designed a communica-
tion-oriented model of reflection which we call the multi-
channel reification model. This approach is inspired by the
message reification model [19], which is message-oriented
but not communication-oriented. We have extended that ap-
proach by introducing the concept of a communication chan-
nel. As we will show, this extension provides a way to struc-
ture middleware with the global view property.

3.1 Multi-channel reification model

The multi-channel reification model considers a synchronous
method invocation as a message sent through a logical chan-
nel established among an object requiring a service (in the
following termed sender), and a set of objects providing such
a service (in the following termed receivers).4 The model then
supports the reification of such logical channels into logical
objects called multi-channels.5 In this way, the abstract con-
cept of a communication channel is embodied by an object;
i.e., the communication channel becomes a first-class citizen.
Each multi-channel monitors the exchange of messages and
potentially enriches the underlying communication semantics
with new features. Each method call is trapped by the multi-
channel when performed, then it is (potentially) imbued with
new semantics, and finally it is delivered to the designated
destinations. Multi-channels can be viewed as interfaces es-
tablished between objects requiring services and objects pro-
viding such services with the aim of enriching these services
with new communication-related features.

The Kind concept. The purpose of a multi-channel is to en-
hance the behavior of its associated communication channel
with a single new feature. Each such feature is termed a kind;
examples are verbosity, check-pointing, authentication, load
balancing, and so on. Each message sent from a sender to a
given group of receivers is different and can be characterized
by different requirements. The kind concept allows the pro-
grammer to differentiate the management mechanism asso-
ciated with each exchanged message. Several multi-channels

4 We treat senders and receivers as separate entities, but this
choice should not be considered mandatory or restrictive — senders
and receivers can coincide without problems. In this case, the multi-
channel will look like a meta-object able to reflect both on outgoing
and on incoming messages.

5 Our meta-objects are called multi-channels after the fact that, in
our view, multi-cast is the most general communication model and
all communication can be modeled on top of it by using our notion
of channel.
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Fig. 2. Objects and loci involved in a multi-point communication

can be established among many senders and the same group
of receivers. Each of these multi-channels implements a dif-
ferent behavior (behavior identified by its kind) and monitors
a different set of exchanged messages. For example, we could
consider a critical system that we want to enhance so that it
checkpoints exchanged messages. In this case, it is conve-
nient to store information only about methods whose execu-
tion causes state changes, i.e., to partition messages into two
sets: non-modifying and modifying messages. Hence, we es-
tablish two kinds of multi-channels between the same group
of objects: one managing non-modifying messages and the
other managing the modifying messages with enhanced se-
mantics defining the expected checkpointing mechanism.

How multi-channels are looked-up. Having introduced the
notion of kind, we are in a position to define a multi-chan-
nel as follows:

multi-channel ≡ (kind, receiveri, . . . , receivern)
That is, each multi-channel is characterized by its kind, and
the set of referents playing the role of receivers. This charac-
terization of the multi-channel is sufficient to allow the run-
time system to determine the multi-channel to which each
message is to be passed. Note that because of the intrinsic dy-
namic nature of the communication semantics, the sender of
the message is not relevant to the characterization of a multi-
channel. Different senders can hook themselves to the chan-
nel at different times and for different requests.

Reification. Each reification is related to a communication
channel established among the interacting objects, and takes
place when a communication channel is used for the first
time, i.e., when a sender first sends a message to a particular
group of receivers. The new multi-channel is compliant with
the characteristics of the communication it embodies, i.e., its
kind satisfies the requested behavior and its referents are the
receivers of the message, and so on. Each message requir-
ing an already used channel is managed by the multi-chan-
nel that embodies such a communication channel. When the
multi-channel terminates its computation the execution con-
trol returns to the sender originating the meta-computation.

On the basis of the implemented behavior, the multi-chan-
nel may also transfer the execution flow to one (or more)
of its referents in order to execute some base-computations
and to compute the expected result. In summary, when an ob-
ject requests a service to another object the following steps
take place: the exchanged message is transparently trapped
and sent to the multi-channel; the multi-channel reifies the
communication channel that must be used; the multi-channel
delivers the message, in compliance with its behavior, to the
designated receivers, then the multi-channel returns the re-
sult. The efficiency of the context switch between the base-
and the meta-level is addressed in Sect. 7.3

The loci of meta-computations. As depicted in Fig. 2, a com-
munication has a wide area of influence (the gray cone in
the picture) and involves several aspects and components of
the system. By area of influence, we mean both performed
actions (e.g., data marshaling and unmarshaling, message de-
livery, and so on), and participating entities (sender and re-
ceivers). To determine where and when meta-computations
on communications might be performed, we have to analyze
and partition the area of influence in accordance with where
and when actions necessary to carry out the communication
are performed. Each such partition, which we name a commu-
nication locus, is an abstraction of a part of the logical path
that a message traverses to get to the designated receivers. In
our taxonomy, an area of influence has three kinds of com-
munication loci (numbers refer to the situation depicted in
Fig. 2):

❶ the sender and the beginning of the communication,
named the source locus,

❷ the dispatching and delivering of the message to the des-
ignated receivers, named the abstract locus, and

❸ the receivers and the execution of the just-delivered mes-
sage, named the target loci.

These loci represent the reification of the whole commu-
nication and of the entities (hidden or not) that implement
a distributed communication. Each multi-channel represents
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Kinds ::= kinds KindList†

KindList ::= kind <kind-name>‡ with ReceiverNameList to MethodNameList KindList |
kind <kind-name> with ReceiverNameList to MethodNameList

ReceiverNameList ::= <receiver-name> , ReceiverNameList | <receiver-name>
MethodNameList ::= <method-name> , MethodNameList | <method-name>

† Terminals are written using a non-proportional font, whereas non-terminals are written using a proportional font.
‡ Identifiers in brackets represent strings whose meaning is clearly defined by their name.

Grammar 1: kinds and kind

these loci. It moves the communication mechanism into the
meta-level under the control of the meta-program and frees
the base-level from the responsibility of managing the com-
munication. For example, messages, which are marshaled by
the sender, are moved into the source locus where the meta-
program can piggyback them with extra data. To allow meta-
programs to customize the semantics of each communication,
the multi-channel performs a specific meta-computation for
each locus, extending their standard behavior. Meta-compu-
tations performed on source and target loci are always car-
ried out at the site of the senders and receivers, respectively.
The taxonomy we have adopted derives from requirements
of performance, reliability, and availability. Locating part of
the meta-program directly at the source and target loci is
convenient for reducing inter-process communications, while
working on the abstract locus allows meta-computations to
be decentralized and the reliability and the availability of the
provided services to be improved at the meta-level. For exam-
ple, the abstract locus can be used to perform checkpointing,
rollbacking, filtering, and so on; that is, to perform actions
related to neither the sender’s nor the receiver’s site.

4 Programming with channels

We have extended the Java RMI framework to a system
called mChaRM, an acronym for multi-Channel Reification
Model, supporting our model. This section describes the set
of extensions to Java to support our model and a simple API
for meta-programming.

4.1 Base-level language extensions

For the run-time system to select the right multi-channel to
use, each request for remote service must provide informa-
tion about both the communication channel (the receivers of
the message) and the required behavior (the kind of the com-
munication channel they intend to use). To provide this in-
formation we have introduced in the base-level language a
construct for specifying a link between each method-call, the
receivers of such calls, and the behavior that will be used for
carrying out such calls.

4.1.1 Kinds

The kinds statement binds communication channels to multi-
channels. Each binding expresses which multi-channel is im-
plicitly used to deal with a message sent through a specific

communication channel, in agreement with the characteri-
zation of multi-channels given in Sect. 3.1. Each binding is
introduced by the kind keyword and expressed through its
components: a set of receivers, the kind, and a list of mes-
sages that the related multi-channel must trap and send to the
meta-level. The syntax of the kinds statement is described by
Grammar 1.

Kind-statement bindings are managed by the compil-
er/interpreter and translated into statements that the run-time
system uses to reify the related communication channel, to
decouple the base-entities from the communication loci, and
to route the method calls toward the correct multi-channel. Of
course, this translation is tied to the adopted multi-channel ar-
chitecture. More about this is explained in Sect. 5.

The kinds statement has to be inserted into the class def-
inition of each potentially reflective sender. It contains meta-
information that describes the interface of each instance with
the meta-level. A reflective sender, written in mChaRM, looks
like:
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Kinds ::= KindList†

KindList ::= kind-name ‡ ReceiverNameList MethodNameList KindList
kind-name ReceiverNameList MethodNameList

ReceiverNameList ::= receiver-name ReceiverNameList receiver-name
MethodNameList ::= method-name MethodNameList method-name

† Terminals are written using a non-proportional font, whereas non-terminals are written using a proportional font.
‡ Identifiers in brackets represent strings whose meaning is clearly defined by their name.

Grammar 1: kinds and kind.

❸ the receivers and the execution of the just-delivered mes-
sage, named the target loci.

These loci represent the reification of the whole com-
munication and of the entities (hidden or not) that imple-
ment a distributed communication. Each multi-channel rep-
resents these loci. It moves the communication mechanism
into the meta-level under the control of the meta-program
and frees the base-level from the responsibility of manag-
ing the communication. For example, messages, which are
marshaled by the sender, are moved into the source locus
where the meta-program can piggyback them with extra data.
To allow meta-programs to customize the semantics of each
communication, the multi-channel performs a specific meta-
computation for each locus extending their standard behav-
ior. Meta-computations performed on source and target loci
are always carried out at the site of the senders and receivers,
respectively. The taxonomy we have adopted derives from re-
quirements of performance, reliability and availability. Locat-
ing part of the meta-program directly at the source and target
loci is convenient for reducing inter-process communications,
while working on the abstract locus allows meta-computa-
tions to be decentralized and the reliability and the availabil-
ity of the provided services to be improved at the meta-level.
For example, the abstract locus can be used to perform check-
pointing, rollbacking, filtering, and so on, that is, to perform
actions related to neither the sender’s nor the receiver’s site.

4 Programming with Channels

We have extended the Java RMI framework to a system called
mChaRM, an acronym for multi-Channel Reification Model,
supporting our model. This section describes the set of ex-
tensions to Java to support our model and a simple API for
meta-programming.

4.1 Base-Level Language Extensions.

For the run-time system to select the right multi-channel to
use, each request for remote service must provide informa-
tion about both the communication channel (the receivers of
the message) and the required behavior (the kind of the com-
munication channel they intend to use). To provide this in-
formation we have introduced in the base-level language a
construct for specifying a link between each method-call, the
receivers of such calls and the behavior that will be used for
carrying out such calls.

4.1.1 Kinds.

The kinds statement binds communication channels to multi-
channels. Each binding expresses which multi-channel is im-
plicitly used to deal with a message sent through a specific
communication channel, in agreement with the characteriza-
tion of multi-channels given in section 3.1. Each binding is
introduced by the kind keyword and expressed through its
components: a set of receivers, the kind and a list of mes-
sages that the related multi-channel must trap and send to the
meta-level. The syntax of the kinds statement is described by
Grammar 1.

Kind-statement bindings are managed by the compiler/in-
terpreter and translated into statements that the run-time sys-
tem uses to reify the related communication channel, to de-
couple the base-entities from the communication loci, and to
route the method calls toward the correct multi-channel. Of
course, this translation is tied to the adopted multi-channel
architecture. More about this is explained in section 5.

The kinds statement has to be inserted in the class defi-
nition of each potentially reflective sender. It contains meta-
information that describes the interface of each instance to-
wards the meta-level. A reflective sender, written in mChaRM,
looks like:
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// usual class description7

Note that, to improve transparency and to remove meta-infor-
mation from the base-level code, data related to the commu-
nication channel can also be passed to the system at compile-
time through a directive to the compiler.

In the rest of the paper, we denote the kind of a multi-
channel with symbols . For example, in the above snippet
of code, we inform the run-time system that multi-channels
of kind deliver messages to the given
receivers , and sent from instances of the class .

4.2 Meta-Level Programming Language.

We have developed a programming environment that allows
programmers to write classes describing multi-channels ben-

Note that, to improve transparency and to remove meta-infor-
mation from the base-level code, data related to the commu-
nication channel can also be passed to the system at compile-
time through a directive to the compiler.

In the rest of the paper, we denote the kind of a multi-
channel by the symbol ��. For example, in the above snippet
of code, we inform the run-time system that multi-channels
of kind �verbose� deliver dummy1 messages to the given
receivers A, B, and Z sent from instances of the class dummy.

4.2 Meta-level programming language

We have developed a programming environment that allows
programmers to write classes describing multi-channels ben-
efitting from the global view property. The resulting program-
ming language is derived from Java and permits multi-chan-
nel description through its loci. The extensions to Java are
described by Grammar 2.
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ClassBody[ ::= KindDefinition SourceLocusSection AbstractLocusSection TargetLocusSection]

KindDefinition ::= kind: <label>†

SourceLocusSection ::= source-locus: NormalBody‡ | ε

AbstractLocusSection ::= abstract-locus: NormalBody | ε

TargetLocusSection ::= target-locus: NormalBody | ε

Expr[ ::= MethodCall◦ | FieldAccess◦ | LocusExpr
LocusExpr ::= LocusIdentifier.MethodCall | LocusIdentifier.FieldName
LocusIdentifier ::= source-locus | abstract-locus | target-locus(<ReceiverName>)

] To simplify the exposition we have set an order among locus sections.
†

<label> represents a string used to identify the kind of meta-behavior.
‡ NormalBody is not further expanded in this paper and represents the body of a Java class.
[ ClassBody and Expr are nonterminals of the Java grammar and need not be further expanded.
◦ MethodCall and FieldAccess are nonterminals of the Java grammar, which describe method-calls and access to object attributes,

respectively.

Grammar 2: Multi-channels

4.2.1 Kind definition

Each class of multi-channel describes the nonfunctional be-
havior, i.e., the kind, applied to the reified communication
channel. Programmers can specify such a kind through the
keyword kind:.

4.2.2 Locus sections

To get the global view property, communication loci have to
transparently interact, allowing the meta-programmer to man-
age the trapped message without worrying about passing it
from one locus to another, and without explicitly coordinat-
ing loci work. Classes describing multi-channels are divided
into three sections, beginning with one of these new quali-
fiers:

• source-locus:
• abstract-locus:
• target-locus:

Each section represents the locus of the communication chan-
nel that it reifies. Each section contains all methods and fields
related to such a locus. These methods are written in standard
Java and they use the API described in Sect. 4.3. It is not
mandatory to write all sections. If a section is omitted, the
corresponding locus either does not perform actions or per-
forms inherited actions when messages pass through it.

4.2.3 Locus representatives

Distributed nonfunctional features are often based on data
owned by both the sender and the receivers involved in the
communication. For example, to distribute service requests
equally among two or more servers, the client needs informa-
tion about the load of each server. Hence, loci should coop-
erate with each other to carry out some services. Of course,
meta-programmers should manually coordinate the access to
such services and data. To achieve the global view property,
we have to carry out a high-level and transparent loci coordi-
nation. Each locus has a representative that masks and takes
care of intra-object communications, i.e., it delivers each re-
quest to the corresponding component at the proper moment

instead of having to be specified by the programmer. These
representatives have the same name as the locus they repre-
sent, e.g., abstract-locus for the abstract locus. We use the
dot notation to access their services and data, for example,
target-locus(i).retrieveField(field).6

4.2.4 Multi-channel interactions and relations

In spite of our extensions to Java, all the advantages of
the object-oriented paradigm are retained. Multi-channels can
also extend existing multi-channels instead of having to be
programmed from scratch. Obviously, the inheritance relation
that binds two multi-channel classes is propagated to their
components. Hence, each locus inherits methods and fields
defined in the corresponding locus section from the parent
multi-channel class.

Multi-channels can interact (through remote method invo-
cations) with other multi-channels (see [3]). Of course these
communications as every other communication can be reified
by multi-channels, thereby providing support for a reflective
tower.

4.3 APIs used by multi-channels

We propose a simple API that aims to be sufficient for sup-
porting a wide range of multi-channel uses. Our API does not
claim to be exhaustive. We have kept it simple for presenta-
tion purposes. In spite of its simplicity our API is powerful
enough to support sophisticated communication mechanisms
and to show the capabilities of the multi-channel approach.
The prototype implements a more extended API that will be
widened in the near future. Methods are classifiable, accord-
ing to their purpose, into three categories: introspection, in-
tercession, and meta-behavior.

We postpone the description of the classes containing the
methods of the API, which depend on the particular multi-
channel architecture, to Sect. 5, where the multi-channel
structure and its implementation are described.

6 Please note that the abstract locus knows all its target loci, and
a target locus can easily refer to another locus by taking from the
abstract locus representative the required information.
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Table 1. A portion of the API provided by mChaRM for carrying out introspection and intercession on senders and receivers
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invokes a specified method of the referent with the specified arguments.

Table 1. A portion of the API provided by mChaRM for carrying out introspection and intercession on senders
and receivers.

Message Introspection and Intercession

retrieves the name of the method called.

through the name changes the method which will be really activated.

retrieves the value of a specified actual argument.

changes the values of a specified actual argument, and returns the old value.

inserts a new argument in the call.

removes from the call a specified argument.

retrieves the return value, can be used only after the return value has been calculated.

replaces the return value with a new one, returns the old value, can be used only after the return value has been calculated.

Table 2. A portion of the API provided by mChaRM for carrying out introspection and intercession on messages.

Meta-Behavior API
Abstract locus

this method embodies the reflective behavior realized by the multi-channel.
Source locus

elaborates the just trapped message on the sender site.

performs sender side meta-computations on the message, immediately before forwarding it to the abstract locus.
Target loci

elaborates the just received message on the receiver site.

performs receiver side meta-computations on the message, immediately before giving it back to the abstract locus.

Table 3. APIs provided by mChaRM for carrying out meta-computation.

claim to be exhaustive, we have kept it simple for presenta-
tion purposes. In spite of its simplicity our API is powerful
enough to support sophisticated communication mechanisms
and to show the capabilities of the multi-channel approach.
The prototype implements a more extended API that will be
widened in the near future. Methods are classifiable, accord-
ing to their purpose, into three categories: introspection, in-
tercession, and meta-behavior.

We postpone the description of the classes containing the
methods of the API, which depend on the particular multi-

channel architecture, to section 5 where the multi-channel
structure and its implementation are described.

4.3.1 Introspection and Intercession.

The proposed model is designed for supporting the enhance-
ment of communication semantics, and not for managing the
base-object structure or semantics. For this reason the part
of the API devoted to intercession on multi-channel referents
is kept simple and consists of the few methods shown in Ta-
ble 1. Since haphazard intercession might lead to an inconsis-
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We postpone the description of the classes containing the
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4.3.1 Introspection and Intercession.
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invokes a specified method of the referent with the specified arguments.
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through the name changes the method which will be really activated.

retrieves the value of a specified actual argument.

changes the values of a specified actual argument, and returns the old value.

inserts a new argument in the call.

removes from the call a specified argument.

retrieves the return value, can be used only after the return value has been calculated.

replaces the return value with a new one, returns the old value, can be used only after the return value has been calculated.

Table 2. A portion of the API provided by mChaRM for carrying out introspection and intercession on messages.

Meta-Behavior API
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Table 3. APIs provided by mChaRM for carrying out meta-computation.

claim to be exhaustive, we have kept it simple for presenta-
tion purposes. In spite of its simplicity our API is powerful
enough to support sophisticated communication mechanisms
and to show the capabilities of the multi-channel approach.
The prototype implements a more extended API that will be
widened in the near future. Methods are classifiable, accord-
ing to their purpose, into three categories: introspection, in-
tercession, and meta-behavior.

We postpone the description of the classes containing the
methods of the API, which depend on the particular multi-

channel architecture, to section 5 where the multi-channel
structure and its implementation are described.

4.3.1 Introspection and Intercession.

The proposed model is designed for supporting the enhance-
ment of communication semantics, and not for managing the
base-object structure or semantics. For this reason the part
of the API devoted to intercession on multi-channel referents
is kept simple and consists of the few methods shown in Ta-
ble 1. Since haphazard intercession might lead to an inconsis-

4.3.1 Introspection and intercession

The proposed model is designed for supporting the enhance-
ment of communication semantics, and not for managing the
base-object structure or semantics. For this reason the part
of the API devoted to intercession on multi-channel referents
is kept simple and consists of the few methods shown in Ta-
ble 1. Since haphazard intercession might lead to an inconsis-
tent state of involved referents, we constrain the current API
as follows: a multi-channel can only look into the state of its
referents and invoke a method of one of its referents playing
the role of receiver.

The part of the API devoted to carrying out intercession
and introspection on messages dispatched through a multi-
channel is more complete. This part of the API is composed

of the methods in Tables 2 and 3. These methods represent
the core of the whole mechanism allowing multi-channels to
alter messages that pass through them. The API provides the
meta-programmer methods for looking into the contents of
the actual parameters, for modifying their contents, for pig-
gybacking extra arguments to the method call we are han-
dling, and so on. Section 6 shows how to use these methods
to implement communication protocols.

4.3.2 Meta-behavior

Methods belonging to this category implement the multi-
channel kind and so define how multi-channels must behave.
The meta-programmer must override these methods to build
new kinds of multi-channels.
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beforeSenderSideMetaBehavior(msg)

afterSenderSideMetaBehavior(msg);

return msg.getReturnValue();

abstract−locus.coreMetaBehavior(msg)

 beforeReceiverSideMetaBehavior(msg)

 afterReceiverSideMetaBehavior(msg)
 return msg;

 tInvoke(msg);

invoke(msg) {

}

 beforeReceiverSideMetaBehavior(msg)

 afterReceiverSideMetaBehavior(msg)
 return msg;

 tInvoke(msg);

invoke(msg) {

}

source locus

target loci

multi−channel

invoke(msg)

invoke(msg)

abstract locus

Fig. 3. Following a method call through the meta-level

Methods shown in Table 3 define the meta-computation
that a multi-channel carries out on messages when they transit
through the three loci (see Sect. 3.1). Their arguments (an in-
stance of class mChaRMMethodCall) represent the exchanged
message and its components, i.e., the name of the activated
method, the value of the actual arguments of the method, and
its designated receivers.

Methods beforeSenderSideMetaBehavior, before-
ReceiverSideMetaBehavior, afterReceiverSide-
MetaBehavior, and afterSenderSideMetaBehavior
perform meta-computations on messages when they pass
through the source (first and fourth methods) and the target
loci (second and third methods). They do not return values.
Nevertheless, they allow the multi-channel to modify the
exchanged message via side-effects performed on their actual
arguments. Their default behavior is to do nothing.

The method coreMetaBehavior coordinates the result
of the multi-channel computations performed on the target
loci and decides how to handle the trapped messages and
where to demand their computation. Its default behavior for-
wards the messages to the given receivers and returns the last
received value to the caller.

The meta-program is basically defined by the execution
of these five methods. These methods are implicitly activated
by the meta-computation when messages flow through the
meta-level. As depicted in Fig. 3, beforeSenderSideMe-
taBehavior is called when the message is intercepted and
handled at the meta-level in the source locus. The message is
passed to the abstract locus and managed by the coreMeta-
Behavior routine.7 When the message gets to a target locus,
it is managed by the beforeReceiverSideMetaBehavior
(it is activated each time the meta-program calls the method
invoke). Then it is delegated to the base-level and the return
value is managed by the afterReceiverSideMetaBehav-
ior just before being returned to the abstract locus. Finally,
the return value is again managed by the afterSenderSi-
deMetaBehavior when the abstract locus returns it to the
source locus.

7 No assumptions are made about the location where the core-

MetaBehavior is performed. Thus, it has to contain only state-
ments whose execution is location-independent. For location-depen-
dent statements the meta-programmer must override beforeSend-

erSideMetaBehavior, afterSenderSideMetaBehavior, be-

foreReceiverSideMetaBehavior, or afterReceiverSideMe-

taBehavior routines.

The following example shows how the behavior of a
multi-channel is described: the snippet of code below im-
plements a multi-channel of kind �verbose�. This kind
of multi-channel is designed for tracing a message while it
passes through the meta-level loci, i.e., it traces when a mes-
sage leaves the sender, when it goes through the multi-chan-
nel computation, and when it gets to the designated receivers.
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Figure 3. Following a method call through the meta-level.

tent state of involved referents, we constrain the current API
as follows: a multi-channel can only look into the state of its
referents and invoke a method of one of its referents playing
the role of receiver.

The part of the API devoted to carrying out intercession
and introspection on messages dispatched through a multi-
channel is more complete. This part of the API is composed
of the methods in Table 2 and Table 3. These methods repre-
sent the core of the whole mechanism allowing multi-chan-
nels to alter messages that pass through them. The API pro-
vides the meta-programmer methods for looking into the con-
tents of the actual parameters, for modifying their contents,
for piggybacking extra arguments to the method call we are
handling, and so on. Section 6 shows how to use these meth-
ods to implement communication protocols.

4.3.2 Meta-Behavior.

Methods belonging to this category implement the multi-chan-
nel kind and so define how multi-channels must behave. The
meta-programmer must override these methods to build new
kinds of multi-channels.

Methods shown in Table 3 define the meta-computation
that a multi-channel carries out on messages when they tran-
sit through the three loci (see section 3.1). Their arguments
(an instance of class ) represent the ex-
changed message and its components, i.e., the name of the
activated method, the value of the actual arguments of the
method, and its designated receivers.

Methods ,
,

and perform
meta-computations on messages when they are passing through
the source (first and fourth methods) and the target loci (sec-
ond and third methods). They do not return values. Neverthe-
less, they allow the multi-channel to modify the exchanged
message via side-effects performed on their actual arguments.
Their default behavior is to do nothing.

The method coordinates the result
of the multi-channel computations performed on the target
loci and decides how to handle the trapped messages and
where to demand their computation. Its default behavior for-
wards the messages to the given receivers and returns the last
received value to the caller.

The meta-program is basically defined by the execution
of these five methods. These methods are implicitly activated
by the meta-computation when messages flow through the
meta-level. As depicted in Fig. 3,

is called when the message is intercepted and
handled at the meta-level in the source locus. The message is
passed to the abstract locus and managed by the

routine7. When the message gets to a target locus,
it is managed by the
(it is activated each time the meta-program calls the method

), then it is delegated to the base-level and the return
value is managed by the

just before being returned to the abstract locus. Finally,
the return value is again managed by the

when the abstract locus returns it to the
source locus.

The following example shows how the behavior of a multi-
channel is described: the snippet of code below implements
a multi-channel of kind . This kind of multi-chan-
nel is designed for tracing a message while it is passing through
the meta-level loci, i.e., it traces when a message leaves the
sender, when it goes through the multi-channel computation,
and when it gets to the designated receivers.
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7 No assumptions are made about the location where the
is performed. Thus, it has to contain only state-

ments whose execution is location-independent. For location-depen-
dent statements the meta-programmer must override

, ,
or

routines.
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5 mChaRM: Architecture

The multi-channel reification model and the described lan-
guage extensions have been realized by the mChaRM frame-
work, which is developed in Java. mChaRM consists of three
components:

❶ a preprocessor dealing with the language extensions,
❷ a Java package ( ) containing the

skeleton classes needed to develop new multi-channels,
and

❸ a Java package ( ) collect-
ing multi-channels implementing some sample kinds, e.g.,

, , , and so on.

The preprocessor has been realized using OpenJava [13].
OpenJava has a compile-time MOP which helps in prototyp-
ing new programming languages. We have written two meta-
objects ( and ) which drive the
OpenJava compiler ( ) during the translation of mChaRM
code into pure Java code. The former meta-object expands
the kinds section adapting the generated code to support the

described reflective approach, whereas the latter meta-object
translates multi-channel classes to fit the chosen architecture
requirements. Figure 4 shows how mChaRM source code is
compiled into Java bytecode.

Our framework allows programmers to enhance multi-
point communications with new features. Java does not sup-
port multi-point communications, such as broadcast, multi-
cast, or multi-point RMI. Hence, mChaRM adopts its own re-
alization of multi-point RMI based on KaRMI [38]. A multi-
point communication can be explicitly started by invoking the
method :

The semantics of is very simple. It multicasts a
specified method call to a given set of servers and then gathers
their results and returns the first received value to the caller.

At the moment, adds to the base-
level code and also hides the reification/reflection mechanism.
We are already working on decoupling from the
mChaRM framework to improve the transparency of the re-
flective mechanism (see [12]). We have also kept its imple-
mentation simple because the main purpose of mChaRM is
to render the multi-communication protocol customizable by
the (meta-)programmer, and not to realize an efficient or com-
plete multi-point remote method invocation mechanism for
Java. For simplicity we also use the for opening
up the point-to-point RMI. Of course, communications that
do not need to be extended with extra functionality can be
carried out with the traditional communication mechanisms
provided by Java.

The rest of this section describes the architecture chosen
for the multi-channels and how it has been realized. We also
briefly describe OpenJava, the developed meta-objects, and
how programs are translated into pure Java.

5.1 Multi-Channel Structure.

To achieve both a good balance among performance, avail-
ability, reliability, and transparency and to comply with the
model requirements, we have chosen to design and imple-
ment the multi-channel as a distributed entity, composed of
a central kernel (termed core), if necessary replicated, and as

5 mChaRM: architecture

The multi-channel reification model and the described lan-
guage extensions have been realized by the mChaRM frame-
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work, which was developed in Java. mChaRM consists of
three components:

❶ a preprocessor dealing with the language extensions,
❷ a Java package (mChaRM.multichannel) containing the

skeleton classes needed to develop new multi-channels,
and

❸ a Java package (mChaRM.mChaRMCollection) collect-
ing multi-channels implementing some sample kinds,
e.g., �verbose�, �validation�, �multi-trig�,
and so on.

The preprocessor was realized using OpenJava [13]. Open-
Java has a compile-time MOP which helps in prototyping
new programming languages. We have written two meta-
objects (mChaRM MOP and GV mChaRM MOP), which drive the
OpenJava compiler (ojc) during the translation of mChaRM
code into pure Java code. The former meta-object expands
the kinds section, adapting the generated code to support the
described reflective approach, whereas the latter meta-object
translates multi-channel classes to fit the chosen architecture
requirements. Figure 4 shows how mChaRM source code is
compiled into Java bytecode.

Our framework allows programmers to enhance multi-
point communications with new features. Java does not sup-
port multi-point communications, such as broadcast, multi-
cast, or multi-point RMI. Hence, mChaRM adopts its own re-
alization of multi-point RMI based on KaRMI [38]. A multi-
point communication can be explicitly started by invoking the
method multiRMI:

Object multiRMI(String methodName, String[]

recsName, Object[] args)

The semantics of multiRMI is very simple. It multicasts a
specified method call to a given set of servers and then gathers
their results and returns the first received value to the caller.

At the moment, mChaRM MOP adds multiRMI to the base-
level code and also hides the reification/reflection mecha-
nism. We are already working on decoupling multiRMI from
the mChaRM framework to improve the transparency of the
reflective mechanism (see [12]). We have also kept its imple-
mentation simple because the main purpose of mChaRM is
to render the multi-communication protocol customizable by
the (meta-)programmer, and not to realize an efficient or com-
plete multi-point remote method invocation mechanism for

Java. For simplicity we also use the multiRMI for opening
up the point-to-point RMI. Of course, communications that
do not need to be extended with extra functionality can be
carried out with the traditional communication mechanisms
provided by Java.

The rest of this section describes the architecture chosen
for the multi-channels and how it has been realized. We also
briefly describe OpenJava, the developed meta-objects, and
how programs are translated into pure Java.

5.1 Multi-channel structure

To achieve both a good balance among performance, avail-
ability, reliability, and transparency, and to comply with the
model requirements, we have chosen to design and imple-
ment the multi-channel as a distributed entity, composed of a
central kernel (termed core), which is replicated if necessary,
and as many stubs as referents. Each stub is an object asso-
ciated with a base-level object running on the same site and
in the same addressing space. Each stub is designed for inter-
facing its referent to the multi-channel core, and vice versa.
Sender stubs embody source loci, receiver stubs embody tar-
get loci, and the core encapsulates the functionality of the ab-
stract locus. A sender stub transparently traps each message
directed to the multi-channel of which it is a part. On the other
hand, receiver stubs actually invoke the method that the multi-
channel is managing. Many stubs may be attached to each
base-level object, one stub for each multi-channel connected
to that object. Stubs also deal with source and target locus
meta-computations and implement the related API methods
(see Table 3).

Both sender and receiver stubs are dynamically attached
to the multi-channel core. Following its characterization (see
Sect. 3.1), the multi-channel knows which of its referents
is playing the role of receiver. During its initialization, the
multi-channel orders its receivers to create a stub that will
be part of the multi-channel. By parsing the kinds section in
the sender, the preprocessor knows which multi-channels the
sender could use during its lifecycle. Thus, clients, once acti-
vated, ask the multi-channel core for a stub to use for hooking
to the multi-channel. To minimize the amount of exchanged
data the core only supplies the name of stub classes to them.
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Then senders use such information and the methods provided
by the Java core reflection library [42] to really create a stub.

Each stub can be viewed as an extension of its own ref-
erent. It communicates with its referent via a local method
call, thereby avoiding problems of communication reliability
and network partitioning. Sending and receiving actions ap-
pear as if they are moved to the meta-level where they are
managed by using the multi-channel semantics. In this way,
the system’s functional behavior may be held constant while
varying the underlying communication algorithms.

The multi-channel core does not reside in a specific lo-
cation with respect to its referents. Its computation is inde-
pendent of its location and usually depends only on the im-
plemented behavior (for example, if it implements a fault tol-
erant behavior then it will either be located on a failure-re-
sistant machine or replicated on several machines). The core
communicates with stubs via remote method calls. Commu-
nications among multi-channel components are considered as
intra-object communications and are performed by the frame-
work transparently to the programmer.

This architecture guarantees a complete encapsulation of
each aspect and locus involved by the communication. Thus,
every communication protocol can be replaced by a new one
encoded into a multi-channel. Message communications are
managed as follows:8

❶ the sender stub of the multi-channel, whose kind matches
the one specified in the call, traps the message;

❷ the stub performs the beforeSenderSideMetaBehav-
ior;

❸ it calls the coreMetaBehavior into the abstract locus
(this call is a remote call);

❹ the core performs its computation;
a© the core calls the invoke into the target loci (optional

computation);
b© the corresponding receiver stubs drive the execution

of the message and return the result to the core;
❺ the core performs some computations on the result and

returns it to the sender stub;
❻ the stub performs the afterSenderSideMetaBehavior

on the return message;
❼ it returns the result to its referent, as the required call

should have done.

Note that the optional computations in the target loci (sub-
points a© and b© of point ❹ in the algorithm above) involve
the beforeReceiverSideMetaBehavior, afterReceiv-
erSideMetaBehavior, and the execution of the trapped
message by the referents of the target loci.

We mitigate the overhead due to the extra remote method
invocation between the source and abstract loci (point ❸ in
the algorithm above), without sacrificing the flexibility of the
approach, by entrusting all the remote communications per-
formed by the multi-channel to the efficient RMI mechanism
provided by KaRMI [38]. Moreover, for the sake of efficiency
we have also provided a special kind of multi-channel, called
�compact�, which merges the source and abstract locus into
a single component, lying in the same addressing space of the

8 This algorithm fills the gaps left in Fig. 3 and in the descrip-
tion given in the previous section explaining how the multi-channel
hooks to the base-level.

sender, without compromising the functionality of the source
and abstract loci. Such an architecture slightly contrasts with
the multi-channel characterization described in Sect. 3.1, fix-
ing the sender for each multi-channel, but it provides a very
efficient multi-channel (see Sect. 7.3) that can be used when
the multi-channel is always used by the same sender.

5.2 Supporting framework

Our framework provides the package mChaRM.multichan-
nel containing the classes: senderStub, receiverStub,
and channelCore. These classes represent the skeleton of a
multi-channel and must be used by the multi-programmer to
derive new stubs and core classes and therefore new kinds of
multi-channels. These classes provide the basic services com-
mon to every locus. In the rest of this subsection we examine
their implementation.

5.2.1 Stubs

Stubs represent the basic components of a multi-channel.
Both sender and receiver stubs inherit from a common class,
called stub, which keeps data about the multi-channel iden-
tity and methods for handling these data. The abstract locus,
i.e., the multi-channel core, can perform both introspection
and intercession on multi-channel referents by delegating in-
trospection and intercession to the stubs implementing source
and target loci. Hence, each kind of stub must play the server
role. The main behavior of sender stubs consists of passing to
the multi-channel core the modified message.

Structure and methods, defined for each kind of stub,
change according to their desired functionality. The main job
performed by a sender stub consists of forwarding the (mod-
ified) call to the multi-channel core. The caller implicitly (lo-
cally) invokes the stubBehavior method of the multi-chan-
nel it would like to use. stubBehavior performs a call to
beforeSenderSideMetaBehavior and then it passes the
modified information about the original call to its multi-chan-
nel core. The method afterSenderSideMetaBehavior is
activated on the (modified) message, when the core returns
the control to the source locus:
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call to the multi-channel core. The caller implicitly (locally)
invokes the method of the multi-channel it
would like to use. performs a call to

and then it passes the modified
information about the original call to its multi-channel core.
The method is activated
on the (modified) message, when the core returns the control
to the source locus.
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// source locus meta-computation
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, and
can not be directly invoked

by the meta-program. Both scan
be overridden in classes derived from to build
new kinds of multi-channels.

The main service provided by each receiver stub is the
method . Its behavior consists of delegating the mes-
sage filtered by the multi-channel to the base-level. The

, before delegating the message for execution, invokes
the , and immediately
after it filters the message (containing also its result) invok-
ing the . The modified
message is really delegated to the base-level using the

method.

// target locus meta-computation

// target locus meta-computation

The private method applies the message using Java
core reflection library [42] features.

5.2.2 Core.

The multi-channel core (described by the class
) must be bound to the stubs of its referents when it

begins its execution. To do that, its constructor requires all
related data, i.e., its kind, the name of its known referents,
and the class name of its stubs. The constructor binds the just
created instance with the stubs of the given referents, and ini-
tializes the multi-channel structures.

New kinds of multi-channels are developed by extend-
ing the class . As explained, the behavior of
the multi-channel is determined by the method

. Every new kind of multi-channel will override this
method. The default behavior of con-
sists of forwarding the trapped message to the specified re-
ceiver stubs for its execution, and of dispatching the result of
the computation of the first receiver back to the callers.

// dispatching the message to the target loci

is the default kind provided by our framework.
The behavior of a multi-channel of this kind simply consists
of realizing a context switch between base- and meta-level
and vice versa, and of delivering the trapped message, without
alterations, to the given receivers. It represents a good starting
point for deriving new communication behaviors.

5.3 mChaRM Preprocessor.

Translation of mChaRM code to pure Java code is carried
out through compile-time reflection. This is implemented by
two meta-objects: , and , which
drive the OpenJava compiler ( ) during the translation of
mChaRM code into pure Java code.

5.3.1 OpenJava.

OpenJava [13] is a compile-time MOP for Java. It can be
seen as an advanced macro processor that performs a source-
to-source translation of a set of classes written in an enriched
version of Java into a set of classes written in standard Java.

Translations to be applied to a base class are described
in a meta-class associated, via the instantiates clause with
the base class. The meta-class is written in standard Java by
using a class library that extends the Java reflection API [42]
with classes that reify language constructs.

Macro expansion is managed by meta-objects correspond-
ing to each class (type). This translation is said to be type-
driven. Callee-side translation of class declarations is driven
by the method of the associated me-
ta-objects. As a result, writing a translation is straightforward
because of the object-oriented design of the library.

5.3.2 Meta-Object to Manage the Base-Level.

OpenJava, through the meta-object , manages
the extensions to the base-level (see section 4.1). This meta-
object takes care of expanding the kinds clause found in senders
and of adding into both senders and receivers all the necessary
code to support the approach ( , binds to the stubs,
and so on).

knows that it is parsing a sender class when
it detects the keyword kinds. In that case, ren-
ders available to the instances of such a class the mapping ex-
pressed by the kinds clause. This is done, at senders’ creation,
by filling a hashtable, indexed on messages and their poten-
tial receivers, with the kind of the multi-channels that have to
be used for managing such messages. Data stored into such a
hashtable are used by the method for intercepting
and passing the message toward the intended multi-channel.

stubBehavior, beforeSenderSideMetaBehavior, and
afterSenderSideMetaBehavior cannot be directly in-
voked by the meta-program. Both SenderSideMetaBehav-
iors can be overridden in classes derived from senderStub
to build new kinds of multi-channels.

The main service provided by each receiver stub is the
method invoke. Its behavior consists of delegating the mes-
sage filtered by the multi-channel to the base-level. The in-
voke, before delegating the message for execution, invokes
the beforeReceiverSideMetaBehavior, and immediately
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after it filters the message (containing also its result) invok-
ing the afterReceiverSideMetaBehavior. The modified
message is really delegated to the base-level using the tIn-
voke method:
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call to the multi-channel core. The caller implicitly (locally)
invokes the method of the multi-channel it
would like to use. performs a call to

and then it passes the modified
information about the original call to its multi-channel core.
The method is activated
on the (modified) message, when the core returns the control
to the source locus.

// source locus meta-computation
// dispatching the message to the abstract locus

// source locus meta-computation

, and
can not be directly invoked

by the meta-program. Both scan
be overridden in classes derived from to build
new kinds of multi-channels.

The main service provided by each receiver stub is the
method . Its behavior consists of delegating the mes-
sage filtered by the multi-channel to the base-level. The

, before delegating the message for execution, invokes
the , and immediately
after it filters the message (containing also its result) invok-
ing the . The modified
message is really delegated to the base-level using the

method.
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The private method applies the message using Java
core reflection library [42] features.

5.2.2 Core.

The multi-channel core (described by the class
) must be bound to the stubs of its referents when it

begins its execution. To do that, its constructor requires all
related data, i.e., its kind, the name of its known referents,
and the class name of its stubs. The constructor binds the just
created instance with the stubs of the given referents, and ini-
tializes the multi-channel structures.

New kinds of multi-channels are developed by extend-
ing the class . As explained, the behavior of
the multi-channel is determined by the method

. Every new kind of multi-channel will override this
method. The default behavior of con-
sists of forwarding the trapped message to the specified re-
ceiver stubs for its execution, and of dispatching the result of
the computation of the first receiver back to the callers.

// dispatching the message to the target loci

is the default kind provided by our framework.
The behavior of a multi-channel of this kind simply consists
of realizing a context switch between base- and meta-level
and vice versa, and of delivering the trapped message, without
alterations, to the given receivers. It represents a good starting
point for deriving new communication behaviors.

5.3 mChaRM Preprocessor.

Translation of mChaRM code to pure Java code is carried
out through compile-time reflection. This is implemented by
two meta-objects: , and , which
drive the OpenJava compiler ( ) during the translation of
mChaRM code into pure Java code.

5.3.1 OpenJava.

OpenJava [13] is a compile-time MOP for Java. It can be
seen as an advanced macro processor that performs a source-
to-source translation of a set of classes written in an enriched
version of Java into a set of classes written in standard Java.

Translations to be applied to a base class are described
in a meta-class associated, via the instantiates clause with
the base class. The meta-class is written in standard Java by
using a class library that extends the Java reflection API [42]
with classes that reify language constructs.

Macro expansion is managed by meta-objects correspond-
ing to each class (type). This translation is said to be type-
driven. Callee-side translation of class declarations is driven
by the method of the associated me-
ta-objects. As a result, writing a translation is straightforward
because of the object-oriented design of the library.

5.3.2 Meta-Object to Manage the Base-Level.

OpenJava, through the meta-object , manages
the extensions to the base-level (see section 4.1). This meta-
object takes care of expanding the kinds clause found in senders
and of adding into both senders and receivers all the necessary
code to support the approach ( , binds to the stubs,
and so on).

knows that it is parsing a sender class when
it detects the keyword kinds. In that case, ren-
ders available to the instances of such a class the mapping ex-
pressed by the kinds clause. This is done, at senders’ creation,
by filling a hashtable, indexed on messages and their poten-
tial receivers, with the kind of the multi-channels that have to
be used for managing such messages. Data stored into such a
hashtable are used by the method for intercepting
and passing the message toward the intended multi-channel.

The private method tInvoke applies the message using Java
core reflection library [42] features.

5.2.2 Core

The multi-channel core (described by the class channel-
Core) must be bound to the stubs of its referents when it
begins its execution. To do that, its constructor requires all
related data, i.e., its kind, the name of its known referents,
and the class name of its stubs. The constructor binds the just
created instance with the stubs of the given referents, and ini-
tializes the multi-channel structures.

New kinds of multi-channels are developed by extend-
ing the class channelCore. As explained, the behavior of
the multi-channel is determined by the method coreMetaBe-
havior. Every new kind of multi-channel will override this
method. The default behavior of coreMetaBehavior con-
sists of forwarding the trapped message to the specified re-
ceiver stubs for its execution, and of dispatching the result of
the computation of the first receiver back to the callers:
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call to the multi-channel core. The caller implicitly (locally)
invokes the method of the multi-channel it
would like to use. performs a call to

and then it passes the modified
information about the original call to its multi-channel core.
The method is activated
on the (modified) message, when the core returns the control
to the source locus.

// source locus meta-computation
// dispatching the message to the abstract locus

// source locus meta-computation

, and
can not be directly invoked

by the meta-program. Both scan
be overridden in classes derived from to build
new kinds of multi-channels.

The main service provided by each receiver stub is the
method . Its behavior consists of delegating the mes-
sage filtered by the multi-channel to the base-level. The

, before delegating the message for execution, invokes
the , and immediately
after it filters the message (containing also its result) invok-
ing the . The modified
message is really delegated to the base-level using the

method.

// target locus meta-computation

// target locus meta-computation

The private method applies the message using Java
core reflection library [42] features.

5.2.2 Core.

The multi-channel core (described by the class
) must be bound to the stubs of its referents when it

begins its execution. To do that, its constructor requires all
related data, i.e., its kind, the name of its known referents,
and the class name of its stubs. The constructor binds the just
created instance with the stubs of the given referents, and ini-
tializes the multi-channel structures.

New kinds of multi-channels are developed by extend-
ing the class . As explained, the behavior of
the multi-channel is determined by the method

. Every new kind of multi-channel will override this
method. The default behavior of con-
sists of forwarding the trapped message to the specified re-
ceiver stubs for its execution, and of dispatching the result of
the computation of the first receiver back to the callers.
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is the default kind provided by our framework.
The behavior of a multi-channel of this kind simply consists
of realizing a context switch between base- and meta-level
and vice versa, and of delivering the trapped message, without
alterations, to the given receivers. It represents a good starting
point for deriving new communication behaviors.

5.3 mChaRM Preprocessor.

Translation of mChaRM code to pure Java code is carried
out through compile-time reflection. This is implemented by
two meta-objects: , and , which
drive the OpenJava compiler ( ) during the translation of
mChaRM code into pure Java code.

5.3.1 OpenJava.

OpenJava [13] is a compile-time MOP for Java. It can be
seen as an advanced macro processor that performs a source-
to-source translation of a set of classes written in an enriched
version of Java into a set of classes written in standard Java.

Translations to be applied to a base class are described
in a meta-class associated, via the instantiates clause with
the base class. The meta-class is written in standard Java by
using a class library that extends the Java reflection API [42]
with classes that reify language constructs.

Macro expansion is managed by meta-objects correspond-
ing to each class (type). This translation is said to be type-
driven. Callee-side translation of class declarations is driven
by the method of the associated me-
ta-objects. As a result, writing a translation is straightforward
because of the object-oriented design of the library.

5.3.2 Meta-Object to Manage the Base-Level.

OpenJava, through the meta-object , manages
the extensions to the base-level (see section 4.1). This meta-
object takes care of expanding the kinds clause found in senders
and of adding into both senders and receivers all the necessary
code to support the approach ( , binds to the stubs,
and so on).

knows that it is parsing a sender class when
it detects the keyword kinds. In that case, ren-
ders available to the instances of such a class the mapping ex-
pressed by the kinds clause. This is done, at senders’ creation,
by filling a hashtable, indexed on messages and their poten-
tial receivers, with the kind of the multi-channels that have to
be used for managing such messages. Data stored into such a
hashtable are used by the method for intercepting
and passing the message toward the intended multi-channel.

�normal� is the default kind provided by our framework.
The behavior of a multi-channel of this kind simply consists
of realizing a context switch between base- and meta-level
and vice versa, and of delivering the trapped message, without
alterations, to the given receivers. It represents a good starting
point for deriving new communication behaviors.

5.3 mChaRM preprocessor

Translation of mChaRM code to pure Java code is carried
out through compile-time reflection. This is implemented by
two meta-objects: mChaRM MOP and GV mChaRM MOP, which
drive the OpenJava compiler (ojc) during the translation of
mChaRM code into pure Java code.

5.3.1 OpenJava

OpenJava [13] is a compile-time MOP for Java. It can be
seen as an advanced macro processor that performs a source-
to-source translation of a set of classes written in an enriched
version of Java into a set of classes written in standard Java.

Translations to be applied to a base class are described
in a meta-class associated, via the instantiates clause, with
the base class. The meta-class is written in standard Java by
using a class library that extends the Java reflection API [42]
with classes that reify language constructs.

Macro expansion is managed by meta-objects corre-
sponding to each class (type). This translation is said to be
type-driven. Callee-side translation of class declarations is
driven by the translateDefinitionmethod of the associ-
ated meta-objects. As a result, writing a translation is straight-
forward because of the object-oriented design of the library.

5.3.2 Meta-object to manage the base-level

OpenJava, through the meta-object mChaRM MOP, manages
the extensions to the base-level (see Sect. 4.1). This meta-ob-
ject takes care of expanding the kinds clause found in senders
and of adding into both senders and receivers all the neces-
sary code to support the approach (multiRMI, binds to the
stubs, and so on).

mChaRM MOP knows that it is parsing a sender class when
it detects the keyword kinds. In that case, mChaRM MOP ren-
ders available to the instances of such a class the mapping
expressed by the kinds clause. This is done, at the senders’
creation, by filling a hashtable, indexed on messages and their
potential receivers, with the kind of the multi-channels that
have to be used for managing such messages. Data stored into
such a hashtable are used by the multiRMI method for inter-
cepting and passing the message toward the intended multi-
channel.

mChaRM MOP also adds the multiRMI method to each
class it detects to be a sender class. The method multiRMI
delivers a specified message to the designated receivers. It
verifies in the hashtable whether a multi-channel has been
associated with such a message. If so, it asks such a multi-
channel to deliver the message by using the related stub. Oth-
erwise, it directly delivers the message to the given receivers.

mChaRM MOP adds the method attachingStub to both
sender and receiver classes. This method binds a receiver stub
to the current object during the multi-channel bootstrap.

5.3.3 Meta-object to manage the meta-level

As explained in Sect. 4.2, each multi-channel is represented
by a single class, rather than multiple classes. However, a
multi-channel is effectively composed of several objects (see
Sect. 5.1). The meta-object GV mChaRM MOP drives decom-
position of a multi-channel class into the classes describing
its components. Note that this is transparent to the meta-pro-
grammer.

The meta-object GV mChaRM MOP creates three classes
and fills each of them with attributes and methods related
to the corresponding locus being described. This job is sim-
plified by the presence of the qualifiers abstract-locus:,
source-locus:, and target-locus:. They introduce all data
(i.e., methods, attributes, and so on) related to the multi-chan-
nel components. Besides, they uniquely identify the member-
ship of each method and attribute. In fact, each method or
attribute under the aegis of one of these qualifiers belongs
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to the corresponding locus (e.g., methods under the aegis of
target-locus: belong to the target locus, and hence to the class
describing receiver stubs).

The meta-object GV mChaRM MOP implicitly adds to the
newly created classes the code to remotely interconnect the
components of the multi-channel. It also deals with locus ref-
erences. Each access that the meta-programmer considers as
a local access to a method or an attribute of another locus is
transparently transformed into a remote call by the meta-ob-
ject. In this way, the global view property is achieved.

A restricted inheritance relation among multi-channels is
the only limitation due to the fact that we code multi-chan-
nels as a whole and then we split them into separate and dis-
tributed components. In fact, we cannot decide from which
class a component class has to inherit. All the classes inherit
from the same group of classes, i.e., when a multi-channel
class inherits from another multi-channel class, the classes
representing its components must inherit respectively from
the classes of the components of the parent multi-channel.
We are studying how to relax this constraint about inheritance
among multi-channels.

6 Multi-channels at work

Our approach aims to experiment with adding complex com-
munication behaviors transparently to the application. Data
compression, efficient data marshaling and unmarshaling, en-
crypted communications, future-based remote method invo-
cation, message checkpointing, and load balancing are exam-
ples of nonfunctional requirements that can be managed by
multi-channels. At the moment, we have realized a few multi-
channel kinds: �verbose�, �validation�, �histori-
cal-validation�, and �RMP�. All are distributed with the
mChaRM framework.

This section describes two applications of the multi-chan-
nel reification approach. Both examples show snippets of
code written using the API and the syntax described earlier.
The first example shows how to build a multi-channel and
what the classes describing multi-channel referents look like.
The second example is a little more complex and in this sim-
plified and paper-tailored form tries to show a wide range of
features of mChaRM: the use of locus representatives, mes-
sage manipulation, locus intercession, and so on.

This section does not provide an exhaustive description.
It only tries to explain some details of the multi-channel reifi-
cation approach through simple examples. More detailed and
complex examples can be found either in [11] or in the frame-
work distribution.

6.1 Authorization policies

A potential communication extension consists of checking
whether a message can or cannot be delivered to a receiver in
agreement with a given authorization policy. Each message
can be considered as a service request forwarded from the
sender to a given receiver. In this case, a multi-channel estab-
lished between two objects plays the role of judge, verifying
whether the sender has the permission for requesting such a
service. As stated in [4], associating the validation phase to

the communication instead of to the receiver hinders mali-
cious attacks. The code reprises the ATM example presented
in [4], with customers and ATMs. In this example customers
can deposit in and withdraw from ATMs. Basically a multi-
channel is established between a customer and an ATM that
verifies that only the owner can withdraw from his account.
The class ATM simply defines methods withdraw and de-
posit:
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also adds the method to each class
it detects to be a sender class. The method deliv-
ers a specified message to the designated receivers. It verifies
in the hashtable if a multi-channel has been associated with
such a message. If so, it asks such a multi-channel to deliver
the message by using the related stub. Otherwise, it directly
delivers the message to the given receivers.

Both to sender and receiver classes, the adds
the method . This method binds a receiver
stub to the current object during the multi-channel bootstrap.

5.3.3 Meta-Object to Manage the Meta-Level.

As explained in section 4.2, each multi-channel is represented
by a single class, rather than multiple classes. However, a
multi-channel is effectively composed of several objects (see
section 5.1). The meta-object drives decom-
position of a multi-channel class into the classes describing
its components. Note that this is transparent to the meta-pro-
grammer.

The meta-object creates three classes and
fills each of them with attributes and methods related to the
corresponding locus being described. This job is simplified by
the presence of the qualifiers abstract-locus:, source-locus:,
and target-locus:. They introduce all data (i.e., methods, at-
tributes, and so on) related to the multi-channel components.
Besides, they uniquely identify the membership of each meth-
od and attribute. In fact, each method or attribute under the
aegis of one of these qualifiers belongs to the correspond-
ing locus (e.g., methods under the aegis of target-locus: be-
long to the target locus, hence to the class describing receiver
stubs).

The meta-object implicitly adds to the
newly created classes the code to remotely interconnect the
components of the multi-channel. It also deals with locus ref-
erences. Each access that the meta-programmer considers as
a local access to a method or an attribute of another locus is
transparently transformed into a remote call by the meta-ob-
ject. In this way, the global view property is achieved.

A restricted inheritance relation among multi-channels is
the only limitation due to the fact that we code multi-channels
as a whole and then we split them in separate and distributed
components. In fact, we cannot decide from which class a
component class has to inherit. All the classes inherit from the
same group of classes, i.e., when a multi-channel class inher-
its from another multi-channel class, the classes representing
its components must inherit respectively from the classes of
the components of the parent multi-channel. We are studying
how to relax this constraint about inheritance among multi-
channels.

6 Multi-Channels at Work

Our approach aims to experiment with adding complex com-
munication behaviors transparently to the application. Data
compression, efficient data marshaling and unmarshaling, en-
crypted communications, future-based remote method invo-
cation, message checkpointing, and load balancing, are exam-
ples of nonfunctional requirements that can be managed by

multi-channels. At the moment, we have realized a few multi-
channel kinds: , ,

, . All are distributed with the mChaRM
framework.

This section describes two applications of the multi-chan-
nel reification approach. Both examples show snippets of code
written using the API and the syntax described earlier. The
first example shows how to build a multi-channel and how
the classes describing multi-channels’ referents look like. The
second example is a little more complex and in this simplified
and paper-tailored form tries to show a wide range of features
of mChaRM: the use of locus representatives, message ma-
nipulation, locus intercession and so on.

This section does not provide an exhaustive description.
It only tries to explain some details of the multi-channel reifi-
cation approach through simple examples. More detailed and
complex examples can be found either in [11] or in the frame-
work distribution.

6.1 Authorization Policies.

A potential communication extension consists of checking if
a message can or cannot be delivered to a receiver in agree-
ment with a given authorization policy. Each message can be
considered as a service request forwarded from the sender
to a given receiver. In this case, a multi-channel established
between two objects plays the role of judge, verifying if the
sender has the permission for requesting such a service. As
stated in [4] associating the validation phase to the communi-
cation instead of the receiver hinders malicious attacks. The
code reprises the ATM example presented in [4], with cus-
tomers and ATMs. In this example customers can deposit in
and withdraw from ATMs. Basically a multi-channel is es-
tablished between a customer and an ATM that verifies that
only the owner can withdraw from his account. The class
simply defines methods and .
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// code for withdrawing  H 1@D�� I from  H 2�, I ’s account.J
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The class is more interesting than the class . It
shows how it is possible to use the kind mechanism to monitor
only a subset of all the provided services.

1

1

1

The class customer is more interesting than the class ATM. It
shows how it is possible to use the kind mechanism to monitor
only a subset of all the provided services:
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also adds the method to each class
it detects to be a sender class. The method deliv-
ers a specified message to the designated receivers. It verifies
in the hashtable if a multi-channel has been associated with
such a message. If so, it asks such a multi-channel to deliver
the message by using the related stub. Otherwise, it directly
delivers the message to the given receivers.

Both to sender and receiver classes, the adds
the method . This method binds a receiver
stub to the current object during the multi-channel bootstrap.

5.3.3 Meta-Object to Manage the Meta-Level.

As explained in section 4.2, each multi-channel is represented
by a single class, rather than multiple classes. However, a
multi-channel is effectively composed of several objects (see
section 5.1). The meta-object drives decom-
position of a multi-channel class into the classes describing
its components. Note that this is transparent to the meta-pro-
grammer.

The meta-object creates three classes and
fills each of them with attributes and methods related to the
corresponding locus being described. This job is simplified by
the presence of the qualifiers abstract-locus:, source-locus:,
and target-locus:. They introduce all data (i.e., methods, at-
tributes, and so on) related to the multi-channel components.
Besides, they uniquely identify the membership of each meth-
od and attribute. In fact, each method or attribute under the
aegis of one of these qualifiers belongs to the correspond-
ing locus (e.g., methods under the aegis of target-locus: be-
long to the target locus, hence to the class describing receiver
stubs).

The meta-object implicitly adds to the
newly created classes the code to remotely interconnect the
components of the multi-channel. It also deals with locus ref-
erences. Each access that the meta-programmer considers as
a local access to a method or an attribute of another locus is
transparently transformed into a remote call by the meta-ob-
ject. In this way, the global view property is achieved.

A restricted inheritance relation among multi-channels is
the only limitation due to the fact that we code multi-channels
as a whole and then we split them in separate and distributed
components. In fact, we cannot decide from which class a
component class has to inherit. All the classes inherit from the
same group of classes, i.e., when a multi-channel class inher-
its from another multi-channel class, the classes representing
its components must inherit respectively from the classes of
the components of the parent multi-channel. We are studying
how to relax this constraint about inheritance among multi-
channels.

6 Multi-Channels at Work

Our approach aims to experiment with adding complex com-
munication behaviors transparently to the application. Data
compression, efficient data marshaling and unmarshaling, en-
crypted communications, future-based remote method invo-
cation, message checkpointing, and load balancing, are exam-
ples of nonfunctional requirements that can be managed by

multi-channels. At the moment, we have realized a few multi-
channel kinds: , ,

, . All are distributed with the mChaRM
framework.

This section describes two applications of the multi-chan-
nel reification approach. Both examples show snippets of code
written using the API and the syntax described earlier. The
first example shows how to build a multi-channel and how
the classes describing multi-channels’ referents look like. The
second example is a little more complex and in this simplified
and paper-tailored form tries to show a wide range of features
of mChaRM: the use of locus representatives, message ma-
nipulation, locus intercession and so on.

This section does not provide an exhaustive description.
It only tries to explain some details of the multi-channel reifi-
cation approach through simple examples. More detailed and
complex examples can be found either in [11] or in the frame-
work distribution.

6.1 Authorization Policies.

A potential communication extension consists of checking if
a message can or cannot be delivered to a receiver in agree-
ment with a given authorization policy. Each message can be
considered as a service request forwarded from the sender
to a given receiver. In this case, a multi-channel established
between two objects plays the role of judge, verifying if the
sender has the permission for requesting such a service. As
stated in [4] associating the validation phase to the communi-
cation instead of the receiver hinders malicious attacks. The
code reprises the ATM example presented in [4], with cus-
tomers and ATMs. In this example customers can deposit in
and withdraw from ATMs. Basically a multi-channel is es-
tablished between a customer and an ATM that verifies that
only the owner can withdraw from his account. The class
simply defines methods and .

// code for depositing the on the ’s account.

// code for withdrawing the from the ’s account.

The class is more interesting than the class . It
shows how it is possible to use the kind mechanism to monitor
only a subset of all the provided services.
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Our example requires that anyone can make a deposit,
whereas a withdrawal can be performed only by the owner
of the account. To ensure such a behavior, a multi-channel
validating only the withdrawal messages is enough. Hence, a
multi-channel of kind �validation� is associated with the
execution of the method withdraw (see above for the cus-
tomer definition):
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Our example requires that anyone can make a deposit, whereas
a withdrawal can be performed only by the owner of the ac-
count. To ensure such a behavior, a multi-channel validat-
ing only the withdrawal messages is enough. Hence, a multi-
channel of kind is associated with the execu-
tion of the method (see above for the
definition).
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Most of the work is performed in the abstract locus. Valida-
tion is an action independent of where it is performed. Thus
we have only redefined the to carry out
the validation phase. In [3, 4], we present examples of multi-
channels dealing with more complex authentication policies
than a simple access matrix, e.g., a policy based on the history
of communications.

6.2 Reliable Multicast Protocol.

Our second example outlines a multi-channel realizing the
reliable multicast protocol by Todd Montgomery [36].

Reliable Multicast Protocol (RMP) is a reliable multicast
transport protocol offering a variety of services of different
quality. Each sender can sequence its packets separately, or
RMP can sequence all the packets sent to a group. RMP also
offers a feature called total ordering, which means that RMP
ensures that every member of the group has received the pack-
ets before passing them to the application. RMP does not re-
quire a special multicast server or group manager. It is based
on a token rotating scheme and on a mix of negative and posi-
tive acknowledgements. The token rotates in the whole recip-
ient group and the token owner acknowledges every packet
it has received while it holds the token. The tokens and ac-
knowledgements are usually sent as multicasts. When other
group members discover that they are missing some pack-
ets, they can send negative acknowledgements to the original
sender.

We have realized a multi-channel, whose kind is ,
that implements the RMP algorithm by using remote method
invocation rather than message passing as in the original al-
gorithm. This implementation does not claim to have all the
same properties of the original RMP (we concentrate our ef-
forts on the total ordering property) but is sufficient to prove
that mChaRM can be used to modify the underlying commu-
nication protocol.

By using a multi-channel, the RMP algorithm is scattered
among the multi-channel components. There are two types

of components involved in the RMP algorithm: the message
sender and its receivers. Target loci play the role of receivers,
acknowledging to each other the receipt of a message, and
waiting for the acknowledgements from each of the other tar-
get loci before delivering the message to the receiver. When a
locus receives an acknowledgement for a message not yet re-
ceived, it asks the abstract locus to send the missing message
again. The target section that implements the RMP protocol
looks as follows:

// Target locus mimics the role of the servers in the RMP algorithm.

//
//
//

It checks if the message has really arrived or it is only an
ack. If it has not arrived it sends a negative ack to the
abstract locus.

// It is called on an ack receipt. It waits acks from the other loci.

// Notifies other target loci upon message receipt.

The abstract locus plays the role of sender, replacing the real
one. It triggers the message propagation and when a target
locus loses a message it sends the missing message again, but
only to the interested locus. The abstract locus section looks
like9:

// Abstract locus plays the role of the client in the RMP algorithm.

// local message time stamp

// If called means that a target locus lost a message.

//
//

It piggybacks the message with the timestamp and for-
wards it to the target loci.

We have implemented a tight collaboration between abstract
and target loci synchronizing the final message execution in a
simple way. This example shows several aspects of mChaRM,

9 We do not explicitly discuss that, because irrelevant for the ex-
planation, but in order to work as expected, multi-channels imple-
menting the reliable multicast protocol have to be multi-threaded.

Most of the work is performed in the abstract locus. Valida-
tion is an action independent of where it is performed. Thus
we have only redefined the coreMetaBehavior to carry out
the validation phase. In [3, 4], we present examples of multi-
channels dealing with more complex authentication policies
than a simple access matrix, e.g., a policy based on the history
of communications.
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6.2 Reliable multicast protocol

Our second example outlines a multi-channel realizing the
reliable multicast protocol by Todd Montgomery [36].

Reliable Multicast Protocol (RMP) is a reliable multicast
transport protocol offering a variety of services of different
quality. Each sender can sequence its packets separately, or
RMP can sequence all the packets sent to a group. RMP also
offers a feature called total ordering, which means that RMP
ensures that every member of the group has received the pack-
ets before passing them to the application. RMP does not re-
quire a special multicast server or group manager. It is based
on a token rotating scheme and on a mix of negative and posi-
tive acknowledgements. The token rotates in the whole recip-
ient group and the token owner acknowledges every packet
it has received while it holds the token. The tokens and ac-
knowledgements are usually sent as multicasts. When other
group members discover that they are missing some pack-
ets, they can send negative acknowledgements to the original
sender.

We have realized a multi-channel, whose kind is �RMP�,
that implements the RMP algorithm by using remote method
invocation rather than message passing as in the original al-
gorithm. This implementation does not claim to have all the
same properties of the original RMP (we concentrate our ef-
forts on the total ordering property) but is sufficient for prov-
ing that mChaRM can be used to modify the underlying com-
munication protocol.

By using a multi-channel, the RMP algorithm is scattered
among the multi-channel components. There are two types
of components involved in the RMP algorithm: the message
sender and its receivers. Target loci play the role of receivers,
acknowledging to each other the receipt of a message, and
waiting for the acknowledgements from each of the other tar-
get loci before delivering the message to the receiver. When a
locus receives an acknowledgement for a message not yet re-
ceived, it asks the abstract locus to send the missing message
again. The target section that implements the RMP protocol
looks as follows:
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Our example requires that anyone can make a deposit, whereas
a withdrawal can be performed only by the owner of the ac-
count. To ensure such a behavior, a multi-channel validat-
ing only the withdrawal messages is enough. Hence, a multi-
channel of kind is associated with the execu-
tion of the method (see above for the
definition).

// initialize the right table from permissionFileName

Most of the work is performed in the abstract locus. Valida-
tion is an action independent of where it is performed. Thus
we have only redefined the to carry out
the validation phase. In [3, 4], we present examples of multi-
channels dealing with more complex authentication policies
than a simple access matrix, e.g., a policy based on the history
of communications.

6.2 Reliable Multicast Protocol.
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reliable multicast protocol by Todd Montgomery [36].
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ient group and the token owner acknowledges every packet
it has received while it holds the token. The tokens and ac-
knowledgements are usually sent as multicasts. When other
group members discover that they are missing some pack-
ets, they can send negative acknowledgements to the original
sender.

We have realized a multi-channel, whose kind is ,
that implements the RMP algorithm by using remote method
invocation rather than message passing as in the original al-
gorithm. This implementation does not claim to have all the
same properties of the original RMP (we concentrate our ef-
forts on the total ordering property) but is sufficient to prove
that mChaRM can be used to modify the underlying commu-
nication protocol.

By using a multi-channel, the RMP algorithm is scattered
among the multi-channel components. There are two types

of components involved in the RMP algorithm: the message
sender and its receivers. Target loci play the role of receivers,
acknowledging to each other the receipt of a message, and
waiting for the acknowledgements from each of the other tar-
get loci before delivering the message to the receiver. When a
locus receives an acknowledgement for a message not yet re-
ceived, it asks the abstract locus to send the missing message
again. The target section that implements the RMP protocol
looks as follows:

// Target locus mimics the role of the servers in the RMP algorithm.
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The abstract locus plays the role of sender, replacing the real
one. It triggers the message propagation and when a target
locus loses a message it sends the missing message again, but
only to the interested locus. The abstract locus section looks
like9:

// Abstract locus plays the role of the client in the RMP algorithm.

// local message time stamp

// If called means that a target locus lost a message.

//
//

It piggybacks the message with the timestamp and for-
wards it to the target loci.

We have implemented a tight collaboration between abstract
and target loci synchronizing the final message execution in a
simple way. This example shows several aspects of mChaRM,

9 We do not explicitly discuss that, because irrelevant for the ex-
planation, but in order to work as expected, multi-channels imple-
menting the reliable multicast protocol have to be multi-threaded.

The abstract locus plays the role of sender, replacing the real
one. It triggers the message propagation and when a target
locus loses a message it sends the missing message again, but
only to the interested locus. The abstract locus section looks
like:9
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ing only the withdrawal messages is enough. Hence, a multi-
channel of kind is associated with the execu-
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reliable multicast protocol by Todd Montgomery [36].
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quality. Each sender can sequence its packets separately, or
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offers a feature called total ordering, which means that RMP
ensures that every member of the group has received the pack-
ets before passing them to the application. RMP does not re-
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on a token rotating scheme and on a mix of negative and posi-
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ient group and the token owner acknowledges every packet
it has received while it holds the token. The tokens and ac-
knowledgements are usually sent as multicasts. When other
group members discover that they are missing some pack-
ets, they can send negative acknowledgements to the original
sender.

We have realized a multi-channel, whose kind is ,
that implements the RMP algorithm by using remote method
invocation rather than message passing as in the original al-
gorithm. This implementation does not claim to have all the
same properties of the original RMP (we concentrate our ef-
forts on the total ordering property) but is sufficient to prove
that mChaRM can be used to modify the underlying commu-
nication protocol.

By using a multi-channel, the RMP algorithm is scattered
among the multi-channel components. There are two types

of components involved in the RMP algorithm: the message
sender and its receivers. Target loci play the role of receivers,
acknowledging to each other the receipt of a message, and
waiting for the acknowledgements from each of the other tar-
get loci before delivering the message to the receiver. When a
locus receives an acknowledgement for a message not yet re-
ceived, it asks the abstract locus to send the missing message
again. The target section that implements the RMP protocol
looks as follows:

// Target locus mimics the role of the servers in the RMP algorithm.

//
//
//

It checks if the message has really arrived or it is only an
ack. If it has not arrived it sends a negative ack to the
abstract locus.

// It is called on an ack receipt. It waits acks from the other loci.

// Notifies other target loci upon message receipt.

The abstract locus plays the role of sender, replacing the real
one. It triggers the message propagation and when a target
locus loses a message it sends the missing message again, but
only to the interested locus. The abstract locus section looks
like9:
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//

It piggybacks the message with the timestamp and for-
wards it to the target loci.
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We have implemented a tight collaboration between abstract
and target loci synchronizing the final message execution in a
simple way. This example shows several aspects of mChaRM,

9 We do not explicitly discuss that, because irrelevant for the ex-
planation, but in order to work as expected, multi-channels imple-
menting the reliable multicast protocol have to be multi-threaded.

We have implemented a tight collaboration between abstract
and target loci synchronizing the final message execution in a
simple way. This example shows several aspects of mChaRM,
e.g., how to manipulate messages (each message is piggy-
backed with a timestamp in order to distinguish them), how
the multi-channel components cooperate, how to reflect on
incoming messages, and so on. This example characterizes
many problems tied to reflecting on incoming messages,
and that are hard to handle by the traditional reflective ap-
proaches.

7 Multi-channel perspectives

Given that the multi-channel approach maintains all the typi-
cal software development advantages (i.e., separation of con-
cerns, code reuse improvement, transparent extendibility, and
so on) that other reflective approaches offer, we focus on pur-
poses, benefits, and drawbacks peculiar to the multi-channel
approach. In particular, we focus on the gaps left open by
other reflective middleware approaches but filled by our ap-
proach.

7.1 Multi-channel purposes

The multi-channel reification model is especially designed for
modeling and reifying communications. The design principle
is to encapsulate and abstract communication mechanisms,
and to permit modular enhancement of the semantics of com-
munication. A multi-channel can easily extend the commu-
nication semantics to include new features such as tracing
mechanisms, reliability control, fault tolerant behavior, and
so on. This approach also provides a framework for testing
and simulating novel communication protocols.

9 We do not explicitly discuss it, because it is irrelevant for the
explanation, but in order to work as expected, multi-channels imple-
menting the reliable multicast protocol have to be multi-threaded.
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Once communication mechanisms have been encapsu-
lated into multi-channels, the meta-programmer is able to fo-
cus on enriching or replacing the behavior of the encapsu-
lated mechanisms, without considering implementation de-
tails. The meta-programmer need not be concerned with is-
sues such as: how to pass information from one multi-chan-
nel component to another, when and how to serialize and syn-
chronize incoming messages, and so on. In this way, the de-
velopment of distributed systems is simplified, and novel be-
haviors can be attained by replacing either the current multi-
channel or some of its components.

7.2 Multi-channel properties

Basic properties such as separation of concerns and transpar-
ent extendibility are common to every reflective approach. In
addition, our approach is characterized by a global view of the
communication channel, a finer granularity of reflection, and
communication channels modeled by open/closed systems.

Global view. As advocated in [18] and stressed in Sect. 2.2,
object-oriented methodologies (including object-oriented re-
flective methodologies) are inadequate for managing distrib-
uted communications, because they do not maintain a global
view of the state of communications.

The multi-channel reification model provides an abstrac-
tion that moves the underlying communication mechanism
into the meta-level. Implementation details of the communi-
cation mechanism are not directly exposed to the meta-pro-
grammer, but its behavior can be easily altered by manag-
ing the multi-channel behavior (see Sect. 6). Multi-channels
encapsulate the communication mechanism and reify all the
aspects of the whole communication (i.e., sender, receivers,
and so on) into a single logical entity, i.e., the multi-channel
itself. Multi-channels directly access both the state and oper-
ations of each communicating object and the exchanged mes-
sages without coordinating their actions with other meta-enti-
ties. Each meta-program, using specific methods provided by
an API, imbues messages circulating on the communication
channel (trapped by the corresponding multi-channel) with
extra behaviors. Each multi-channel owns all data related to
the reified communication channel and to messages circulat-
ing through it. These data are directly at the meta-program’s
disposal. That is, the multi-channel approach maintains, at
any time, a global view of communications.

Communications as open/closed systems. The proposed ap-
proach moves the communication mechanism into the meta-
level. Each object involved in a reified communication is re-
ally composed of two parts. One runs at the base-level and is
developed by the application programmer. The second part is
the reification of the first, runs at the meta-level (the imple-
mentation of the source and target loci), and is developed by
the meta-programmer. The meta-level part abstracts all mech-
anisms for managing messages either sent by or received from
any other object, and exposes such mechanisms to manipu-
lation and redefinition by the meta-program. Multi-channels
gather data related to messages filtered by them and mon-
itor each communication phase. Hence, each multi-channel

transforms the logical channel it reifies and messages passed
through it in a open/closed system with few if any interac-
tions with base-level entities or with other meta-entities ex-
ternal to the multi-channel itself. Such a complete separa-
tion improves reusability of novel communication features
because the code implementing the novel feature is part of
the multi-channel code and does not need any other code.
The separation of communication-related features from the
rest of the functional code also simplifies experimenting, test-
ing, and maintaining (novel) features related to communica-
tion channels. To change the semantics of a communication
channel, i.e., to update the multi-channel associated with a
communication channel, is enough for testing novel features.
Multi-channels can be considered open systems because they
are structured in an inheritance hierarchy and therefore each
of their components can be easily extended and refined. They
are also closed systems because they can be used as-is without
interacting with external entities. This feature allows increas-
ing abstraction and encapsulation of communication while
still enforcing a global view of the communication state. The
well-known composition problem [37]10 can be limited us-
ing multi-channels, because each multi-channel is a closed
system and encapsulates the whole communication. In addi-
tion, the kind feature permits differentiation of meta-behav-
iors from the composition of behaviors. Thus, it is likely that
the meta-programmer needs to combine multiple meta-enti-
ties.

Granularity. We define granularity of reflection [10] as the
smallest aspect (e.g., objects, methods, method calls, and so
on) of the base-system that can be reified by two different
meta-entities. The multi-channel reification approach allows
the meta-program to use a different multi-channel to reify
each communication channel used in the base-level. Multi-
channels span several objects, reifying the communication
channel they use, and filtering only specific message patterns.
Multi-channels have a twofold granularity. ¿From the point-
of-view of a single object the granularity is at message level
because different messages sent to or from the same object
can be reified by different multi-channels. On the other hand,
by considering all the objects involved in a communication,
the granularity is at the communication channel level. This is
because two multi-channels with a different kind can be es-
tablished among the same group of objects, applying two dif-
ferent behaviors to messages using them. In general, a finer
granularity improves the flexibility of the model. A finer gran-
ularity allows a more detailed control of the work of the base-
level system, but at the cost of meta-entity proliferation: to
observe the base-level system deeply, we need a greater num-
ber of observers (i.e., meta-entities).

7.3 Performance evaluation

Performance is a potential problem of the multi-channel reifi-
cation approach, or of any reflective approach for realizing

10 The composition problem is defined as the behavior conflict we
have to face when we are trying to compose two or more meta-ob-
jects. Two meta-objects can work on the same information or can
offer overlapped services with obvious synchronization problems.
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Table 4. Evaluation of the mChaRM performance

single host (ms) ratio two hosts (ms) ratio three hosts (ms)

Java RMI 0.86 1.15
KaRMI 0.77 0.89 0.68 0.59
mChaRM (KaRMI) 1.85 2.15 (2.40) 1.59 1.38 (2.33) 1.37
mChaRM (KaRMI+�compact�) 0.93 1.08 (1.20) 0.79 0.69 (1.16)

middleware. Each reflective mechanism is realized by trap-
ping a call and hijacking it towards the meta-level. Such
mechanisms introduce additional computation to each com-
munication. Our approach is no different in that respect. How-
ever, it traps only those calls specified by the kinds clause,
thereby reducing the performance impact. Moreover, transi-
tions between base- and meta-level are dealt with by local
method calls. Despite this, performance is not as good as
expected, because the adopted multi-channel architecture re-
places the single explicit remote method invocation with two
implicit remote method invocations (one from the sender stub
to the core and one from the core to the receiver stub). To limit
the performance impact, we have followed two strategies:

• adopting KaRMI [38] for dispatching messages among
multi-channel components instead of standard Java RMI.
KaRMI has proved itself to be more efficient than stan-
dard RMI. Every mChaRM application takes advantage
of this strategy;

• providing an alternative multi-channel architecture, called
compact, which merges the source with the abstract locus.
Note that its use sacrifices some of the flexibility of the
approach (see Sect. 5.1).

We have quantified the overhead due to our architecture with
respect to standard Java RMI. Our experiments are related
to point-to-point communications. Experiments with multi-
point communications are not germane because both standard
Java RMI and KaRMI do not directly support this model
of communications. The aim of our experiments consists of
measuring how long mChaRM (both standard and compact
architectures), Java RMI, and KaRMI take to perform a re-
mote method invocation. Please note that our experiments
were also done using KaRMI to highlight the benefits that
mChaRM has achieved by adopting KaRMI. All the exper-
iments were performed on a network composed of AMD
1800+ PC’s with 512Mb RAM running Linux (kernel version
2.4.8), jdk v1.4, and KaRMI v1.06β.

Message reification overhead. The scenario of our experi-
ments is composed of a receiver that returns a dummy mes-
sage of small fixed size (to limit the overhead of marshal-
ing and unmarshaling the message), and a sender that re-
peatedly requests that service. The mChaRM implementation
involves two multi-channels of kind �normal� and �com-
pact�, which only trap the message and deliver it to the des-
ignated receiver without performing meta-computations.

Table 4 summarizes the results of our experiments. The
second, fourth, and sixth columns represent how long the
method call takes by using a network composed of one,
two, or three (only with mChaRM) computers. The third and
fifth columns show the performance ratios between mChaRM
or KaRMI and Java RMI; the performance ratios between
mChaRM and KaRMI are reported enclosed in parenthesis.

As expected, mChaRM is slightly slower than the Java RMI
framework, but its compact version, due to the use of KaRMI
(see the second row of Table 4) improves the performances of
a remote method invocation with respect to the standard Java
RMI framework.

We are improving mChaRM’s performance by develop-
ing our efficient group communication [12], parallelizing the
effective dispatching of messages to the receivers, and reengi-
neering the multi-channel architecture by using stream sock-
ets instead of RMIs. Note that the focus of our work is on
flexibility and reusability rather than efficiency.

8 Related work

At the moment, several reflective middleware projects are un-
der development, i.e., projects that try to mix reflection and
distributed middleware. There are many approaches and as
a result it is almost impossible to consider them all. How-
ever, most efforts focus on improving middleware adaptabil-
ity, +flexibility, and separation of concerns. GARF and CodA
are milestones in the reflective middleware research area,
whereas systems such as: OpenORB, OpenCORBA, and
DynamicTAO represent new approaches.

GARF [20,21] lies between the system layer (which sup-
plies the distribution mechanisms) and the application layer.
Its basic purpose consists of wrapping the distribution primi-
tives and supplying a uniform and abstract interface to them.
Hence, GARF does not implement the distribution environ-
ment, but masks each access to it and offers the program-
mer a tool for changing and enriching the basic behavior. The
GARF model is derived from the meta-object model [32]
with some adaptations for communications management. It
links a meta-object, called encapsulator, to the referents. Two
encapsulators communicate via another meta-object, called
mailer. This architecture provides safe communication cus-
tomizability via a built-in library containing several mail-
ers and encapsulators. As the authors state, mailers can only
control out-going messages. Thus an object has to receive
the message in order to decide whether to take care of it
or not. Additionally, GARF mimics each communication in
the meta-level, decoupling the communication-related code
from the application code. Unfortunately, each communica-
tion is reified by three separated meta-objects: a mailer and
two encapsulators. The mailer carries out computations on
the trapped message, while the encapsulators carry out the ac-
tual interprocess communication. Such a decomposition does
not permit any of them to have a global view of the whole
communication.

CodA [34, 35] provides a distributed framework from
scratch. Distribution is entrusted to the meta-level and each
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object is reified by seven meta-objects. Each meta-object
manages a specific distribution aspect (e.g., message queue,
sending, and so on). This meta-level factorization simpli-
fies the definition of new behaviors for specific distribution
aspects. Unfortunately, it also jeopardizes the mechanism’s
flexibility by selecting which aspects might be managed.
Also, it might complicate the meta-program code, which is
scattered among several meta-objects and might render the
composition and coordination of the behavior of so many
meta-objects error-prone. Meta-objects reify and reflect on
how an object has to manage a message, and not on the spe-
cific semantics of message management and related aspects.
Hence, the CodA framework lacks a global view, although
the author suggests it is achieved by communications and
cooperation among meta-entities. However, a simple mech-
anism to vary the applied meta-behavior according to the sin-
gle exchanged message is not provided.

OpenCORBA [31] implements the CORBA API in
NeoClasstalk. It reifies various properties of CORBA’s bro-
kers through explicit meta-classes, allowing customization of
some internal characteristics of the CORBA ORB. Meta-
classes permit the modification and reconfiguration of the
ORB mechanisms. OpenCORBA is a reflective ORB, which
allows the programmer to dynamically adapt the behavior of
the broker. Two basic aspects of the CORBA software bus
have been reified: the remote invocation mechanism via a
proxy, and the IDL type checking on the server class. The
OpenCORBA IDL compiler generates a proxy class on the
client side and a template class on the server side. The proxy
class is associated with the meta-class ProxyRemote im-
plementing the remote invocation mechanisms; the template
class is associated with the meta-class TypeChecking, which
implements the IDL type checking on the server. As defined
by the CORBA specification [39], both the remote invoca-
tion mechanism and type checking are completely indepen-
dent of the functionalities provided by the server class. There-
fore, they can be separated from the base code and constituted
as a class property that is implemented by meta-classes (re-
spectively ProxyRemote, and TypeChecking). The dynamic
adaptability of both the invocation mechanisms and the type
checking in OpenCORBA is achieved by extending default
meta-classes ProxyRemote and TypeChecking. Adaptabil-
ity is however limited to only two communication aspects.
The global view concept is not provided and several commu-
nication aspects (such as brokers, name service, and so on) are
not accessible to (and cannot be manipulated by) the meta-
program, but it should be simple to extend the OpenCORBA
system in order to open up such aspects.

DynamicTAO [29,30] extends the TAO [40] system, pro-
viding a CORBA compliant Reflective ORB. It allows in-
spection and reconfiguration of its internal engine. It achieves
that by exporting an interface for:

❶ transferring components across the distributed system,
❷ loading and unloading modules into the ORB run-time,

and
❸ inspecting and modifying the ORB configuration state.

Reification in DynamicTAO is achieved through a collection
of entities known as component configurators. A component
configurator holds the dependencies between a certain com-

ponent and other system components. Each process running
the DynamicTAO ORB contains a component configurator
instance called DomainConfigurator, which maintains ref-
erences to instances of the ORB and to servants running in
that process. Each instance of the ORB contains a customized
component configurator called TAOConfigurator.

TAOConfiguratorcontains hooks to which implementa-
tions of DynamicTAO strategies (e.g., for security, schedul-
ing and so on) are attached. Hooks work as mounting points
where specific strategy implementations are made available to
the ORB. This architecture permits consistent strategy recon-
figuration. Component implementations are shipped as dy-
namically loadable libraries linked to the ORB process at
run-time. They are organized in categories representing dif-
ferent aspects of the ORB internal engine or different types of
servant components. The Dynamic Service Configura-
tor contains the DomainConfigurator that supplies com-
mon operations for the dynamic configuration of components
at run-time. It delegates some of its functions to specific com-
ponent configurators.

The DynamicTAO approach is quite different from that
adopted by other reflective middleware. This approach is very
low-level and quite powerful in order to change the strate-
gies the system adopts. Unfortunately, it is neither simple nor
powerful when programmers want to extend the communica-
tion behavior with features not directly related to strategies
already involved in communication, e.g., to introduce a mes-
sage checkpointing policy from scratch.

OpenORB [14, 16] adopts a component-based model
of computation. Its component model supports components
with interfaces, interfaces for continuous media, and the cre-
ation of explicit bindings between compatible interfaces. The
meta-level exposes the actual implementation. This approach
makes it possible to access the meta-level of a meta-level. It
supports per-interface meta-spaces. Several meta-spaces gov-
ern all the aspects of the underlying system. The content
of a component is represented by two distinct meta-models,
namely the encapsulation and the composition meta-models.
The activities (message arrival, enqueueing, and so on) of
the underlying system are represented by the environmental
meta-model. This approach also provides a fine level of con-
trol over the support provided by the middleware platform.

OpenORB provides an interesting and powerful ap-
proach to adaptation and to the development of reflective
middleware. Meta-spaces provide a flexible mechanism to
reify and to reflect on any system aspect, but it is compo-
nent-oriented and it behaves similarly to object-oriented mod-
els in that it neglects the handling of communications as
a whole. Notwithstanding this fact, their approach provides
fine-grained reflection which permits varying the behavior of
a single component. Explicit bindings reify communication
channels, but not the involved components. They have a low-
level approach, handling exchanged messages as a stream in-
stead of higher-level abstractions. So, it is easy to filter or to
handle them as a whole, but is difficult to manage them at a
higher level, e.g., piggybacking information.

Aspect-Oriented Programming. Aspect-oriented pro-
gramming (AOP) [28] is an alternative approach to imple-
menting a separation of concerns. This approach provides
the separation between cross-cutting concerns during devel-
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opment of a system (in our case, cross-cutting concerns are
about communications). The program elements representing
the cross-cutting concerns are woven by the compilation pro-
cess so that the separate elements do not remain separate at
run-time. AOP as well as compile-time reflection (that is, re-
flective changes to the code carried out during compilation,
e.g., OpenJava performs compile-time reflection) is more
efficient than run-time reflection (that is, changes to the pro-
gram carried out during execution, e.g., Java core reflection
and mChaRM perform changes at run-time), but it loses this
advantage when meta-objects’ behavior depends on dynamic
information as message content. Another point about AOP is
that it encapsulates code that implements cross-cutting con-
cerns in a single module and at compile-time the code is wo-
ven into the application code. In contrast, although mChaRM
also encapsulates cross-cutting concerns in a single module,
we maintain a separation at all times between the cross-cut-
ting code and the application code. One advantage of our ap-
proach is that it allows for dynamic adjustment of communi-
cation semantics, unlike an AOP approach.

Composition Filters [2] has been a forerunner of the
AOP methodology. Akşit et al. provide an actor-based frame-
work [1] that associates an actor description with a set of fil-
ters for incoming and outgoing messages. These filters man-
age the exchanged messages (altering the overall behavior of
the system), but they do not offer an abstraction mechanism
that permits getting a global view of communication. Further-
more, they neither allow manipulation of the actors’ state nor
offer a mechanism to keep a history of message manipula-
tions.

9 Conclusions and future work

The role of reflection in monitoring object communication in
complex distributed applications is a crucial issue. We have
presented a reflective model, called multi-channel reification,
that abstracts and encapsulates inter-object communications
and enables the meta-programmer to enrich and/or replace
the predefined communication semantics. The approach pro-
vides a way to reify the abstract concept of communications
into a logical entity, i.e., communication channels become
first-class citizens. It allows programmers to access commu-
nication details without writing the code necessary to real-
ize them. The multi-channel approach fills most of the gaps
of the traditional reflective approaches. Its main achieve-
ment consists of improving the global view of communica-
tion without compromising encapsulation. The approach also
offers a finer reification/reflection granularity than previous
approaches, and a simplified approach to the development of
communication-oriented software. By allowing an object to
hook itself to several multi-channels, the multi-channel reifi-
cation approach achieves a finer granularity than an object-
based approach. However, we also have to deal with consis-
tency problems. In fact, some of the multi-channels hooked
to a base-object could decide to carry out intercession on the
state of their referent, and without a careful synchronization
of the accesses the state might become inconsistent or incor-
rect (due to the well-known race-condition problem). For this
reason, we have limited multi-channel intercession on its ref-
erents. In the future we are going to introduce a mechanism

to implicitly lock and unlock the state of the multi-channel
referents and to improve the intercession mechanism of the
approach.

The proposed model is realized by a framework,
called mChaRM, written in Java by means of the lan-
guage extension capabilities of the OpenJava [13] re-
flective tool. The usability of the approach is shown by
prototyping some non-trivial applications [3, 4]. A sim-
ple API for supporting the development of meta-programs
has also been provided. The mChaRM system can be
downloaded from http://www.disi.unige.it/person/
CazzolaW/mChaRM_webpage.html.

In addition to API improvements and bug fixes, we are
analyzing how to improve the performance of our system. As
shown in Sect. 7.3, mChaRM is very flexible and facilitates
addition of extra features to communications, but its weak
point is performance. Obviously, we have to pay for flexibil-
ity, but we are sure that performance of the current imple-
mentation can be improved by using Java proxies and apply-
ing code localization. Other future work consists of designing
a composition relation among multi-channel loci in order to
create new kinds of multi-channels by means of existing lo-
cus composition (for example, by composing a future-based
source locus with a reliable multicast protocol). This would
further enhance the reusability and readability of the meta-
level code. Finally, we are planning to extend mChaRM with
a native support for futures [22, 26] in order to capture asyn-
chronous as well as synchronous communication models.
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