
Modeling context-dependent aspect interference

using default logics

Frans Sanen, Eddy Truyen, and Wouter Joosen

Distrinet Research Group, Department of Computer Science, K. U. Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{frans.sanen, eddy.truyen, wouter.joosen}@cs.kuleuven.be

Abstract. Explicitly representing aspect interactions is vital so that they can be

shared and used in the course of system evolution. As a consequence, guidance

can be given to the software developer and automated support for handling

interactions becomes possible. In this paper, we propose to use default logics

for modeling context-dependent aspect interference. We motivate and illustrate

our work by an example interference from the domotica world.

Keywords: Aspect interactions, knowledge, interference, default logics.

1 Introduction

Aspect interference is a well-known challenging problem with current aspect-

oriented programming technology. As it has already been motivated in [10], explicitly

representing aspect interactions results in an important form of knowledge that can be

shared and used in the course of system evolution. If specified formally enough,

software systems can exploit this knowledge to autonomously reconfigure themselves

to detect and resolve undesired aspect interferences, by using existing safe dynamic

reconfiguration support similar to the one in [13].

In this paper, we want to make the case for modeling support for context-

dependent interferences. We define aspect interference as a conflicting situation

where one aspect that works correctly in isolation does not work correctly anymore

when it is composed with other aspects. A context-dependent interference is an

interaction that might or might not occur if certain aspects are composed depending

on the runtime context at hand. Or more formally: “Given an aspect A that is woven

into a system S, there exists a set of contextual conditions CA associated with aspect A

such that, when at least one element of CA evaluates to true, the execution of the

aspect A will cause an error in the execution of system S. A contextual condition is

defined as a boolean expression that evaluates over properties of the context in which

the aspect is deployed – contextual properties.” Obviously, the context of aspect A

does not only consist of the system S but also involves all the other aspects that are

simultaneously woven into S. As a consequence, context information entails key

information pieces that we need to express.

We consider this particular problem of context-dependent aspect interferences in

the case of aspect-oriented middleware [14, 7, 13] which uses AOP for implementing

middleware services. Subtle aspect interferences exist in a middleware environment.

Consider the example of a power saving aspect and an integrity aspect using

symmetric encryption [11]. A symmetric encryption key has a limited lifetime and

therefore should be regenerated upon expiration, which is very computationally

intensive. Only when the power of the device being used is low and the key is about

to expire, interference arises between both the power saving and integrity aspect.

A prerequisite for the scenario of systems capable of autonomously reconfiguring

themselves to resolve context-dependent interferences is that interaction knowledge

has to be specified in an unambiguous way. We have found no satisfactory solutions

in current work on interaction modeling. We will elaborate on this later in the paper.

The rest of this paper is structured as follows. Section 2 elaborates on the need for

modeling context-dependent interactions. It also shortly indicates that current

approaches lack sufficient support in this regard. We propose to use default logics for

modeling context-dependent interactions in Section 3 before concluding in Section 4.

2 Modeling aspect interactions

To be able to share and use aspect interactions in the course of system evolution,

we need a means for modeling them. Some work already exists where interactions are

modeled separately, but to the best of our knowledge, these suffer from several

shortcomings, especially in the context of context-dependent interactions. In the NFR

framework [2], Chung et al. introduce the concept of correlating (i.e. interacting) non-

functional requirements. It for instance can be expressed that using a compressed

format to store information deteriorates (hurts) its response time. However, such a

representation cannot take into account the concrete context in which the interaction

arises, e.g. when the CPU load is above a certain threshold. Similarly, interaction

modeling in feature models [4, 6] allows you to express that feature A requires or

excludes feature B, but this is not flexible enough to provide any means to model the

context on which an interaction depends. Classen et al. [3] consider feature

interactions as the simultaneous presence of several features causing malfunctions,

hence ignoring the potential context dependence of an interaction. Finally, Pawlak et

al. [8] propose a language to abstractly define an execution domain, advice codes and

their often implicit execution constraints. Especially the latter are relevant because

exactly these represent the context in which undesired effects occur, e.g. a network

overload situation. These conditions are key information pieces we need to express.

The pedagogical example interaction we will use throughout the rest of this paper

is situated in a home integration system product line context and borrowed from [5].

Home integration systems are a new and emerging set of systems combining features

in the area of home control, home security, communications, personal information,

health, etc. Each feature easily can be mapped to one or more aspects implementing it.

Imagine a domotica product that helps to protect the housing environment. On the one

hand, your personal product entails a flood control feature which shuts off the water

main to the home during a flood. On the other hand, it also contains a fire control

feature that turns on some sprinklers during a fire. Turning the sprinklers on during a

fire and flooding the basement before the fire is under control results in a really

undesirable interaction since the flood control feature will shut off the home's water

main, rendering the sprinklers useless. As a result, your house further will burn down.

In order to have a correct representation for our example interaction, three

scenarios have to be considered: (1) the basement is flooded, (2) a fire in the house is

detected and (3) the basement is flooded as a result of the sprinklers trying to

extinguish the fire.

Traditional methods and technologies often offer support to prioritize features in

relationship with one another. However, we are convinced that such a prioritization

not always is feasible to overcome context-dependent interactions. One of the main

reasons is because priorities are far less flexible. First of all, an interaction between

two features having the same priority cannot be resolved. Secondly, the priority of

two features related to one another can be different in varying circumstances. For

instance, suppose there are two additional features included in your domotica product:

a presence simulation feature that turns lights on and off to simulate the presence of

the house occupants and a doorkeeper feature which controls the access to the house

and allows occupants to talk to the visitor [12]. Obviously, we would like the

doorkeeper not to give away the fact that nobody is at home if there is an unidentified

person in front of the door to prevent the owners from a burglary.

3 Using default logics

Default logics haven been originally proposed by Reiter [9] as a non-monotonic

logic to formalize reasoning with default assumptions. It allows us to make plausible

conjectures when faced with incomplete information and draw conclusions based

upon assumptions. [1] As an intuitive example of what can be expressed, consider the

well-known principle of justice in our Western culture: “In the absence of evidence to

the contrary, assume that the accused is innocent.” In this section, we shortly will

overview both the syntactic sugar and semantics (informally) of default logics by

applying it to our example interaction from above. Next, we discuss the relevance of

using default logics in our example.

3.1 Syntax and semantics

A default theory T is a pair (W, D) consisting of a set W of predicate logic formulas

(background theory or facts of T) and a set D of defaults. The default explicitly

representing our example interaction is presented below (1) and should be thought of

being used together with the classical rule that is also shown (2).

���������	�
���:
�������������������

��������������������

(1)

������������ � ������������������� (2)

According to default (1), if we know that ���������	�
��� is true and

������������������� can be assumed, we can conclude ��������������������.

Because of rule (2), ������������������� will be concluded upon fire detection.

The three parts of a default rule are called the prerequisite ϕ, justifications ψi and

conclusion χ respectively. Hence, the general explanation of any default rule is given

by “if we believe that prerequisite is true, and the justification is consistent with our

current beliefs, we also believe the conclusion”. In other words, given a default ϕ: ψ1,

ψ2, … / χ, its informal meaning is: if ϕ is known, and if it is consistent to assume ψ1,

ψ2, … then conclude χ. It is consistent to assume ψi iff the negation of ψi is not part

of the background theory W.

At this point, it is important to realize that classical logic is not appropriate to

model this situation. Imagine the following rule as an alternative for (1).

���������	�
��� �
������������������� � �������������������� (3)

The problem with this rule is that we have to definitely establish (basically because

of the closed world assumption) that the fire control feature is not active before

applying this rule. As a consequence, the flood control service never would be able to

become active.

The semantics of default logic typically is defined in terms of extensions. Intuitively,

an extension seeks to extend the set of known facts (i.e. background theory) with

“reasonable” conjectures based on the applicable defaults. More formally, a default ϕ:

ψ1, ψ2, … / χ, is applicable to a deductively closed set of formulas E iff ϕ ∈ E and

¬ψ1 ∉ E, ¬ψ2 ∉ E, ... You can think of E as the context in which ϕ should be known

and with which ψi should be consistent.

3.2 Discussion

We will now revisit our default (1) together with its semantics. Intuitively, this rule

states that the flood control service will be activated upon detection of water in the

basement, unless the fire control feature is active. It is easy to see that with this

representation all possible scenarios are represented correctly. In each of these

scenarios, the set D of defaults contains default (1). The only two facts that are

relevant when searching extensions are ���������	�
��� and ������������.

If, on the one hand, a sensor detects water in the basement, then the background

theory W will include ���������	�
���. Because of default (1), the only valid

extension is the one where flood control service will become active (we conclude

�������������������� because ���������	�
��� (the prerequisite) is true and the

justification
������������������� is not inconsistent with what is currently known.

On the other hand, if a fire is detected by the system, W will include ������������

and classical rule (2) fires so that ������������������� also becomes true in the

extension. If later (the third scenario), as a consequence, the basement will be flooded,

default (1) can no longer be applied. Note that this is exactly what we wanted.

In our approach, the context in which an interaction occurs is made explicit via one

or more justifications in a default rule. By taking certain conditions into account, the

solution of the interaction lies in the fact that the justifications need to be invalidated

in order to have a correct functioning system. Because of this, an interaction is

prevented from occurring while normal execution behavior also easily can be

captured and isn't influenced.

4 Conclusion

To conclude, we started from the observation that modeling aspect interactions results

in an important form of knowledge that can be shared and used in the course of

system evolution. We propose to use default logics for representing aspect

interactions. The main advantage of this approach is that the interaction becomes

explicit in the justification part of a default rule. Therefore, undesired interactions can

be prevented from happening by invalidating one of the justifications of the default

rule representing the interaction.

Acknowledgments. This work is partially funded by the Interuniversity Attraction

Poles Programme Belgian State, Belgian Science Policy, Research Fund K. U. Leuven

and European Commission grant IST-2-004349: European Network of Excellence on

Aspect-Oriented Software Development (AOSD-Europe), 2004-2008.

References

1. Antoniou, G.: A tutorial on default logics. ACM Computing Surveys 31 (4), pp. 337-359,

1999.

2. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-functional requirements in software

engineering. Kluwer academic publishing, Norwell, 2000.

3. Classen, A., Heymans, P., Schobbens, P.: What's in a Feature: A Requirements

Engineering Perspective. Proceedings of the 11th International Conference on

Fundamental Approaches to Software Engineering (FASE'08), pp. 16-30, 2008.

4. Czarnecki, K., Eisenecker, U. W.: Generative Programming. Addison Wesley, London,

2000.

5. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE

Software, vol. 19, no. 4, pp. 58-65, 2002.

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Technical report CMU/SEI-90-TR-021.

7. Lagaisse, B., Joosen, W.: True and transparent distributed composition of aspect

components. 7th International Middleware Conference, pp. 41-62, 2006.

8. Pawlak, R., Duchien, L., Seinturier, L.: CompAr: Ensuring safe around advice

composition. 7th Internation Conference on Formal Methods for Open Object-Based

Distributed Systems, 2008.

9. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1-2), pp. 81-132,

1980.

10. Sanen, F., Truyen, E., Joosen, W.: Managing concern interactions in middleware. 7th

International Conference on Distributed Applications and Interoperable Systems, 2007.

11. Sanen, F., Truyen, E., Joosen, W., Jackson, A., Nedos, A., Clarke, S., Loughran, N.,

Rashid, A.: Classifying and documenting aspect interactions. Proceedings of the 5th

AOSD Workshop on Aspect, Components, and Patterns for Infrastructure Software, pp.

23-26, 2006.

12. Schwanninger, C. et al.: Confidential list of requirements on a Totally Integrated Home

platform. Siemens internal document, 2006.

13. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for Distributed Adaptations in

Aspect-Oriented Middleware, 7th International Conference on Aspect-Oriented Software

Development, 2008.

14. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jorgensen, B.: Dynamic and

Selective Combination of Extensions in Component-based Applications. 23rd

International Conference on Software Engineering, pp. 233-242, 2001.

